Moskva, Moscow, Russian Federation
Russian Federation
The introduction of the methodology of a competence approach in teaching the courses of departments of engineering graphics, as shows the experience of a number of technical universities of Russia, occurs according to some template. If in 70–80 years the last century the Departments was the routing of the teaching subject with the indication providing, and provide discipline then currently are talking about interdisciplinary competences. In this case, interdisciplinary competence on engineering and computer graphics define the departments. The wording of the intrasubject competencies reduced to define the topics of descriptive geometry necessary for the study of the fundamentals of engineering graphics (geometrical and projection drawing, the cutting line and the intersection of simple surfaces). In the end, the important topics of descriptive geometry (basic concepts of the theory of curves and surfaces, sweep, tangent planes, axonometric etc.) that have practical value, are excluded from the syllabus. This greatly affects the quality overall geometric training of students of technical universities with based on the level of teaching geometry in high school. In our opinion, the way out of the situation is in consistent, purposeful transformation the descriptive geometry in the engineering geometry without radical distortions. In this regard, the present article is devoted to the presentation some issues in the theory of nonlinear forms in engineering geometry. The proposed approach will enhance the practical value of our discipline due to the expansion of cross-curricular competencies with related sections of higher mathematics, CAD, etc.
the curves and surfaces, contours, the smoothness of the contour, the kinematic method of forming a multidimensional surfaces.
Нелинейные формы трехмерного пространства, кривые линии и поверхности нашли достаточно полное и всестороннее освещение в учебных и научных публикациях. Это классические труды по алгебраической и дифференциальной геометрии, а также
многочисленные публикации по их использованию в компьютерной графике, геометрическом моделировании технических форм, САПР [1; 4; 8; 20]. Вопросы их образования, задания на чертеже, построения сопряжений (обводов), а также решения позиционных и метрических задач с их участием, рассматриваются в традиционных курсах начертательной геометрии.
1. Bozhko A.N., Zhuk D.M., Manichev V.B. Komp'juternaja grafika [Computer graphics]. Moscow, Publishing house of Bauman Moscow State Technical University, 2007. (in Russian)
2. Borovikov I. F., Ivanov G. S., Seregin V. I., Surkova N.G. Novye podhody prepodavanija nachertatel'noj geometrii v uslovijah ispol'zovanija informacionnyh obrazovatel'nyh tehnologij [New approaches of teaching descriptive geometry in the terms of use of educational information technology]. Inzhenernyy vestnik [Engineering Bulletin]. Publishing house of Bauman Moscow State Technical University. 2014, I. 12. (in Russian)
3. Vojcehovskij M.N. Rassloenie [Bundle]. Matematicheskaya encyclopedia [Mathematical Encyclopedia]. 1984, V. 4, pp. 893–894. (in Russian)
4. Golovanov N.N. Geometricheskoe modelirovanie [Geometric modeling]. Moscow, Fizmatgiz Publ. 2002. (in Russian)
5. Guznenkov V.N., Jakunin V.I. Geometro-graficheskaja podgotovka kak integrirujushhij faktor obrazovatel'nogo processa [Geometro-graphic training as an integrating factor in the educational process.] Obrazovanie i obshhestvo [Education and society], Moscow, 2014, I. 2, pp. 26–28. (in Russian)
6. Dmitrieva I.M. Integracija graficheskih i analiticheskih sposobov reshenija zadach pri obuchenii studentov nachertatel'noj geometrii. Kand. Diss. [Integration of graphical and analytical methods of problem solving in teaching students of descriptive geometry. Cand. Diss.]. Moscow, 2005. (in Russian)
7. Efimov N.V., Rozendorn Je.R. Linejnaja algebra i mnogomernaja geometrija [Linear algebra and multidimensional geometry]. Moscow, 1974. 544 p. (in Russian)
8. Zav'jalov Ju.S., Leus V.A., Skorospelov V.A. Splajny v inzhenernoj geometrii [The splines in engineering geometry]. Moscow, Mashinostroenie Publ., 1985. (in Russian). DOI: 10.12737/12163.
9. Ivanov G.S. Konstruktivnyj sposob issledovanija svojstv parametricheski zadannyh krivyh [A constructive way to study the properties of parametrically defined curves]. Geometrija i grafika [Geometry and graphics]. Moscow, INFRA- M Publ., 2014, V. 2, I. 3, pp. 3–6. (in Russian). DOI: 10.12737/12163.
10. Ivanov G.S. Predystorija i predposylki transformacii nachertatel'noj geometrii v inzhenernuju [Previous History and Background of Transformation of the Descriptive Geometry in the Engineering Geometry]. Geometrija i grafika [Geometry and graphics]. 2016, V.4, I. 2, pp. 29–36. (in Russian). DOI: 10.12737/19830.
11. Ivanov G.S. Teoreticheskie osnovy nachertatel'noj geometrii [Theoretical foundations of descriptive geometry]. Moscow, Mashinostroenie Publ., 1988. (in Russian)
12. Ivanov G.S., Dmitrieva I.M. Integrirovannyj kurs geometrii i linejnoj algebry kak sredstvo formirovanija matematicheskoj podgotovki studentov tehnicheskih vuzov [Integrated course of geometry and linear algebra as means of formation of mathematical training of students of technical universities]. Omskij nauchnyj vestnik, serija Obshhestvo. Istorija. Sovremennost' [Omsk scientific Bulletin, series Society. History. Modernity]. 2010, I. 5, pp. 205–208. (in Russian)
13. Ivanov G.S., Dmitrieva I.M. O zadachah nachertatel'noj geometrii s mnimymi reshenijami [About the tasks of descriptive geometry with imaginary solutions]. Geometrija i grafika [Geometry and graphics]. Moscow, 2015, V. 3, I. 2, pp. 3–8. (in Russian). DOI: 10.12737/12163.
14. Ivanov G.S., Dmitrieva I.M. Organizacionno-pravovoe obespechenie postanovki integrirovannogo kursa linejnoj algebry, nachertatel'noj i analiticheskoj geometrii [Organizational and legal support of the integrated production of linear algebra, descriptive and analytic geometry]. Pravo i obrazovanie [Law and education]. Moscow, 2007, I. 11, pp. 68–74. (in Russian)
15. Ivanov G.S., Moskalenko V.O., Murav'ev K.A. Kak obespechit' obshhegeometricheskuju podgotovku studentov tehnicheskih universitetov [How to ensure to obseruations training of students in the technical universities]. Nauka i obrazovanie, MGTU im. N.E. Baumana [Science and Education, MSTU. NE Bauman]. 2012, I. 8. Available at: http:// technomag.edu.ru/doc/445140.html
16. Ivanov G.S., Seregin V.I. Inzhenernaja geometrija — teoreticheskaja baza postroenija geometricheskih modelej [Engineering geometry is the theoretical basis of constructing geometric models]. Sb. statej mezhdunarodnoj nauchno-prakticheskoj konferencii «Innovacionnoe razvitie sovremennoj nauki» [Collection of articles of international scientificpractical conference "Innovative development of modern science"], Ufa, RIC BashGU Publ., 2014, pp. 339–346. (in Russian)
17. Sal'kov N.A. Grafo-analiticheskoe reshenie nekotoryh chastnyh zadach kvadratichnogo programmirovanija [Grafo- analytical solution of some particular quadratic program-12 ming problems]. Geometrija i grafika [Geometry and graphics]. Moscow, INFRA-M Publ., 2014, V. 2, I. 1, pp. 3–8. (in Russian). DOI: 10.12737/3842.
18. Sal'kov N.A. Nachertatel'naja geometrija — baza dlja geometrii analiticheskoj [Descriptive geometry — the base of analytical geometry]. Geometrija i grafika [Geometry and graphics]. Moscow, INFRA-M Publ., 2016, V. 4, I. 1, pp. 44–54. (in Russian). DOI: 10.12737/18057.
19. Seregin V.I., Ivanov G.S., Dmitrieva I.M., Murav'ev K.A. Mezhdisciplinarnye svjazi nachertatel'noj geometrii i smezhnyh razdelov vysshej matematiki [Interdisciplinary connections descriptive geometry and related sections of higher mathematics]. Geometrija i grafika [Geometry and graphics]. Moscow, INFRA-M Publ., 2013, V. 1, I. 3–4, pp. 8–12. (in Russian). DOI: 10.12737/2124.
20. Foks A., Pratt M. Vychislitel'naja geometrija [Computational geometry]. Moscow, Mir Publ., 1982. (in Russian)