Целью работы является совершенствование оперативного кондуктометрического контроля качества пара на ТЭС. Для этого разработана методика определения концентраций СО2 в паре при нейтральном водно-химическом режиме без дозирования аммиака. Использован метод измерений электропроводности конденсата пара при рабочих давлениях парогенераторов и различных температурах. Реализация данного метода с помощью специального устройства обеспечила значительное снижение инерционности контроля и дифференцирование примесей. Проанализированы экспериментальные данные о первых кажущихся константах диссоциации и предельной эквивалентной электропроводности угольной кислоты, константах диссоциации и предельной эквивалентной электропроводности NaCl в жидкой фазе на линии насыщения. На основании данного анализа оценена погрешность определения предложенным методом концентраций СО2 и примесей в паре в виде NaCl. Рассчитана погрешность аппроксимации для зависимостей, описывающих поведение констант диссоциации и предельной эквивалентной электропроводности угольной кислоты, которые могут быть использованы при расчете концентраций по предложенной методике, а также при организации и ведении водно-химических режимов.
оперативный контроль, качество пара, кондуктометрические методы, угольная кислота, электролитические свойства.
При организации и ведении водно-химического режима (ВХР) на ТЭС основными задачами являются замедление процессов коррозии конструкционных материалов и образования отложений в пароводяном тракте энергетических установок [1]. Снижение рН растворов и усиление коррозионных процессов определяются наличием в питательной воде и паре котельных установок угольной кислоты, следовательно, ее содержание необходимо свести к минимуму [1, 2].
Причинами нарушения норм ВХР могут быть:
— присосы охлаждающей воды в конденсаторах турбин;
— растворение в конденсате CO2, содержащегося в воздухе;
— попадание в конденсатно-питательный тракт потенциально кислых веществ, разлагающихся при высоких температурах Т с образованием СО2 [3 ,4].
В настоящее время на станциях оперативный контроль качества вод типа конденсата осуществляется путем анализа охлажденных до Т = 298,15К проб, отобранных из контрольных точек.
Авторы [3, 5] предложили новый метод оперативного контроля примесей в конденсатах, позволяющий упростить существующую методику контроля. Суть метода заключается в следующем. Определяется концентрация примесей С путем измерения рН, Т и удельной электропроводности χ охлажденных проб до и после катионообменного фильтра и решаются уравнения, соответствующие математическим моделям ионных равновесий в водных растворах. Значения концентраций примесей в виде ионов Cl –, Na+, HCO3 – и свободной углекислоты получаются на основании анализа уравнений электронейтральности, электрической проводимости, баланса углекислоты до и после H-фильтра, диссоциации углекислоты по первой ступени.
Но анализ охлажденных проб предполагает наличие устройств отбора, транспортирования, снижения давления и охлаждения пробы. Такая методика связана со значительным транспортным запаздыванием пробы. Это негативно влияет на достоверность полученных результатов и возможность быстрого реагирования в случае внезапного резкого изменения контролируемых параметров в потоке пара.
Значительно уменьшить инерционность процесса измерения и исключить необходимость в пробоотборных линиях и устройствах подготовки пробы позволяет метод контроля, заключающийся в измерении χ конденсата контролируемого пара в кондуктометрической ячейке охлаждаемого датчика, размещенного в потоке пара [6–9]. При этом С примесей в паре определяют из зависимости С = f (χ) [6, 10]. Однако в работах [6, 10] отсутствует подробный анализ возможностей метода для условий, когда в паре энергоблоков с нейтральным ВХР без дозирования аммиака присутствуют примеси в виде диоксида углерода и NaCl. Не была детально разработана и методика определения С на основании данных о χ водных растворов СО2 с учетом наблюдаемых на станциях реальных значений С и особенностей изменения χ с температурой.
Целью настоящей работы является совершенствование метода определения концентрации примесей в паре, основанного на измерении χ конденсата пара охлаждаемым датчиком [8], и оценка погрешности определения С примесей в конденсате пара, содержащем только СО2 и NaCl в количестве, характерном для ТЭС при нейтральном ВХР без дозирования аммиака.
Для достижения поставленной цели:
— решены задачи, связанные с анализом изменения первых кажущихся констант диссоциации Kd1 и предельной эквивалентной электропроводности Λо угольной кислоты и Λо NaCl в жидкой фазе на линии насыщения;
— разработаны методики определения χ на основании данных о Kd1и Λо для угольной кислоты и определения С на основании данных о χ;
— выполнена оценка погрешности аппроксимации для данных о Kd1 и Λо угольной кислоты.
1. Воронов, В. Н. Водно-химические режимы ТЭС и АЭС / В. Н. Воронов, Т. И. Петрова. — Москва : Издательский дом МЭИ, 2009. — 238 с.
2. Правила технической эксплуатации электрических станций и сетей РФ СО 153-34.20.501-2003 / Министерство энергетики Российской Федерации. — Москва : Энергосервис, 2003. — 145 с.
3. Ларин, Б. М. Основы математического моделирования химико-технологических процессов обработки теплоносителя на ТЭС и АЭС / Б. М. Ларин, Е. Н. Бушуев. — Москва : Издательский дом МЭИ, 2009. — 306 с.
4. Мартынова, О. И. Поведение органики и растворенной углекислоты в пароводяном тракте электростанций / О. И. Мартынова // Теплоэнергетика. — 2002. — № 7. — С. 67–70.
5. Бушуев, Е. Н. Исследование и математическое моделирование химико-технологических процессов водообработки на ТЭС : дис. … д-ра техн. наук / Е. Н. Бушуев. — Иваново, 2010. — 359 с.
6. Щербаков, В. Н. Исследование электрофизических свойств водных теплоносителей при высоких параметрах : дис. … канд. техн. наук / В. Н. Щербаков. — Москва, 1980. — 204 с.
7. Кондуктометрический датчик : а. с. 958943 СССР : МКИ4 G01N 27/02 / Д. Л. Тимрот [и др.]. — № 3248961 ; заявл. 16.02.81 ; опубл. 15.09.82, Бюл. № 34. — 3 с.
8. Щербаков, В. Н. Совершенствование кондуктометрического контроля качества конденсата пара при термической очистке вод / В. Н. Щербаков // Вестник Дон. гос. техн. ун-та. — 2013. — Т. 13, № 3/4 (72/73). — С. 117–124.
9. Экспериментальное и теоретическое обоснование нового метода контроля качества рабочего тела в контурах ТЭС и АЭС / Н. Н. Ефимов [и др.] // Изв. вузов. Сев.-Кавк. регион. Техн. науки. — 2012. — № 3 (166). — С. 28–32.
10. Лукашов, Ю. М. Экспериментально-теоретическое обоснование новых методов контроля качества пара и воды современных теплоэнергетических установок : дис. … д-ра техн. наук / Ю. М. Лукашов. — Москва, 1981. — 412 с.
11. Новый справочник химика и технолога : в 12 т. Т. 7. Химическое равновесие. Свойства растворов / под ред. А. М. Симановой. — Санкт-Петербург : Профессионал, 2004. — 998 с.
12. Дамаскин, Б. Б. Электрохимия / Б. Б. Дамаскин, О. А. Петрий, Г. А. Цирлина. — Москва : Химия ; Колос С, 2006. — 672 с.
13. Добош, Д. Электрохимические константы. Справочник для электрохимиков / Д. Добош. — Москва : Мир, 1980. — 365 с.
14. Stefansson, A. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200oC — A potentiometric and spectrophotometric study / A. Stefansson, P. Benezeth, J. Schott // Geochimica et Cosmochimica Acta. — 2013. — Vol. 120. — P. 600–611.
15. Рыженко, Б. Н. Определение констант диссоциации угольной кислоты и расчет степеней гидролиза СО32- и НСО3-ионов в растворах карбонатов и бикарбонатов при повышенных температурах / Б. Н. Рыженко // Геохимия. — 1963. — № 2. — С. 137–148.
16. Read, A.-J. The First Ionization Constant of Carbonic Acid from 25 to 250o C and to 2000 bar / A.-J. Read // Journal of Solution Chemistry. — 1975. — Vol. 4, № 1. — P. 53–70.
17. Dickson, A.-G. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater me-dia / A. G. Dickson, F. J. Millero // Deep-Sea Research. — 1987. — Vol. 34. — P. 1733–1743.
18. Shedlovsky, T. The first ionization constant of carbonic acid, 0 to 38 from conductance measurements / T. Shedlovsky, D.-A. MacInnes // Journal of the American Chemical Society. — 1935. — Vol. 57. — P. 1705–1710.
19. Harned, H.-S. The first ionization of carbonic acid in aqueous solution of sodium chloride / H.-S. Harned, F.-T. Bonner // Journal of the American Chemical Society. — 1945. — Vol. 67. — P. 1026–1031.
20. Nakayama, F.-S. Thermodynamic functions for the dissociation of NaHCO3, NaCO3-, H2CO3, and HCO3- / F.-S. Nakayama // Journal of Inorganic and Nuclear Chemistry. — 1971. — Vol. 33. — P. 1287–1291.
21. Spectrophotometric measurement of the first dissociation constants of carbonic acid at elevated temperatures / S.-N. Park [et al.] // Journal of the Chemical Society Faraday Transactions. — 1998. — Vol. 94. — P. 1421–1425.
22. The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature / F.-J. Millero [et al.] // Geochimica et Cosmochimica Acta. — 2007. — Vol. 71. — P. 46–55.
23. Carbonate equilibrium in hydrothermal systems — first ionization of carbonic acid in NaCl media to 300o C / C.S. Patterson [et al.] // Geochimica et Cosmochimica Acta. — 1982. — Vol. 46. — P. 1653–1663.
24. Li, D. The speciation equilibrium coupling with phase equilibriumin the H2O–CO2–NaCl system from 0 to 250o C, from 0 to 1000 bar, and from 0 to 5 molality of NaCl / D. Li, Z. Duan // Chemical Geology. — 2007. — Vol. 244. — P. 730–751.
25. Робинсон, Р. Растворы электролитов / Р. Робинсон, Р. Стокс. — Москва : Иностранная литература, 1963. — 425 с.
26. Первухин, Б. С. Развитие научно-методических основ проектирования кондуктометрических приборов контроля жидкостей и разработка технических средств их метрологического обеспечения : автореф. дис. … д-ра техн. наук / Б. С. Первухин. — Барнаул, 2012. — 39 с.
27. Щербаков, В. Н. Инновационные электрофизические методы оперативного контроля качества вод типа конденсата на ТЭС / В. Н. Щербаков, Г. А. Власков // Обозрение прикладной и промышленной математики. — 2014. — Т. 21, вып. 5. — С. 764–765.
28. Егошина, О. В. Современное состояние систем химико-технологиче-ского мониторинга на тепловых станциях на основе опыта МЭИ и НПЦ «Элемент» / О. В. Егошина, В. Н. Воронов, М. П. Назаренко // Теплоэнергетика. — 2014. — № 3. — С. 39–45.