APPLICATION OF AUGMENTED REALITY IN TEACHING MINING AND GEOLOGICAL GRAPHICS
Abstract and keywords
Abstract (English):
In modern society, with its growing consumption of natural resources, there is a need for highly qualified specialists, especially in the mining industry. One of the challenges in training such specialists is the complexity of perceiving and studying mining and geological processes, as well as engineering and computer graphics. To improve the effectiveness of education, especially in the early years, the use of digital technologies such as augmented reality (AR) becomes crucial, as it enhances visual perception of educational material and increases student engagement. This approach is already being actively applied in various industries, including manufacturing and education, where AR improves visual and contextual learning, contributing to a 25–80% increase in material retention. The use of AR technologies in teaching engineering graphics and descriptive geometry helps students better understand complex 3D structures and mining workings, especially in conditions of limited hands-on experience and insufficient knowledge of drafting. It enables a clear visualization of processes that are difficult to grasp through conventional 2D drawings. The paper focuses on the analysis of various platforms and tools for developing AR applications, such as Unity, Unreal Engine, ARKit, ARCore, and WebXR. The article discusses the advantages and disadvantages of these technologies in the context of educational applications and the creation of AR applications aimed at enhancing the perception and study of mining and geological objects and processes. An application developed on the Unity platform is presented, allowing users to explore three types of mining workings: single-track, double-track, and triple-track. Survey results from students using this application show that AR applications significantly enhance the visual appeal and understanding of educational material, improving spatial perception and the assimilation of complex graphic elements.

Keywords:
augmented reality, mining and geological graphics, Unity, drawings, mine workings
References

1. Aver'yanov V.V. Knigi s dopolnennoy real'nost'yu kak effektivnyy obrazovatel'nyy instrument [Tekst] /V.V. Aver'yanov, D.I. Troickiy // Virtual'naya i dopolnennaya real'nost'-2016: sostoyanie i perspektivy: sb. nauchno-metodicheskih materialov, tezisov i statey konferencii / pod obsch. red. D.I. Popova. — M.: Izd-vo GPBOU MGOK, 2016. — C. 7–11.

2. Arsent'ev D.A. Vnedrenie elementov dopolnennoy real'nosti v uchebno-metodicheskuyu literaturu [Tekst] /D.A. Arsent'ev // V sb.: Universitetskaya kniga: tradicii sovremennost' materialy nauchno-prakticheskoy konferencii. — 2015. — S. 18–22.

3. Belova O.P. Primenenie tehnologii dopolnennoy real'nosti dlya graficheskoy vizualizacii uchebnyh zadach prostranstvennoy geometrii [Tekst] / O.P. Belova, A.A. Kaznin // Koncept. — 2017. — T. 39. — C. 3521–3525. — URL: https://e-koncept.ru/2017/971031.htm (data obrascheniya: 03.12.2024).

4. Boykov A.A. Problemy geometro-graficheskoy podgotovki studentov VUZov [Tekst] / A.A. Boykov, K.T. Egiazaryan, A.V. Efremov, N.S. Kadykova // Geometriya i grafika. — 2023. — T. 11. — № 1. — S. 4–22. — DOI:https://doi.org/10.12737/2308-4898-2023-11-1-4-22

5. Dannye po mirovoy energetike i klimate [Elektronnyy resurs]. — URL: https://yearbook.enerdata.ru (data obrascheniya: 20.11.2024).

6. Ignat'ev S.A. Obzor obrazovatel'nyh kursov na osnove tehnologiy dopolnennoy real'nosti [Tekst] / S.A. Ignat'ev, Z.O. Tret'yakova, M.V. Voronina // Geometriya i grafika. — 2020. — T. 8. — № 3. — S. 67–86. — DOI:https://doi.org/10.12737/2308-4898-2020-67-86

7. Ignat'ev S.A. Dopolnennaya real'nost' v nachertatel'noy geometrii [Tekst] / S.A. Ignat'ev, Z.O. Tret'yakova, M.V. Voronina // Geometriya i grafika. — 2020. — T. 8.— № 2. — S. 41–50. — DOI: doi.org/10.12737/2308-4898-2020-41-50

8. Ignat'ev S.A. Tehnologii dopolnennoy real'nosti v proektnoy deyatel'nosti studentov [Tekst] / S.A. Ignat'ev, Z.O. Tret'yakova, M.V. Voronina // Geometriya i grafika. — 2020. — T. 8. — № 2. — S. 51–57. — DOI:https://doi.org/10.12737/2308-4898-2020-51-57

9. Kozlova I.A. Graficheskie discipliny i informatizaciya inzhenernogo obrazovaniya [Tekst] / I.A. Kozlova, R.B. Slavin, B.M. Slavin // Geometriya i grafika. —2022. — T. 10. — № 4. — S. 35–45. — DOI:https://doi.org/10.12737/2308-4898-2022-10-4-35-45

10. Musaeva T.V. Tehnologii dopolnennoy real'nosti v proektnoy deyatel'nosti studentov [Tekst] / T.V. Musaeva, A.A. Urago // Geometriya i grafika. — 2021. — T. 9. — № 2. — S. 46–55. — DOI:https://doi.org/10.12737/2308-4898-2021-9-2-46-55

11. Oyuunzhargal Ch. Tendencii obucheniya v inzhenernoy grafike [Tekst] / Ch. Oyuunzhargal, E. Oyuunzayaa // Geometriya i grafika. — 2022. — T. 10. — № 2. — S. 53–59. — DOI:https://doi.org/10.12737/2308-4898-2022-10-2-53-59

12. Paliy N.V. Pokadrovaya animaciya v obuchenii nacherta-tel'noy geometrii [Tekst] / N.V. Paliy // Geometriya i grafika. — 2023. — T. 11. — № 3. — S. 39–47. — DOI:https://doi.org/10.12737/2308-4898-2023-11-3-39-47

13. Slavin R.B. Razrabotka sistemy poluavtomatichesko-go modelirovaniya trehmernyh izobrazheniy [Tekst] /R.B. Slavin, N.S. Kargin, B.M. Slavin // Geometriya i grafika. — 2023. — T. 11. — № 2. — S. 47–55. — DOI:https://doi.org/10.12737/2308-4898-2023-11-2-47-55

14. Alyousify A.L. AR-Assisted Children Book For Smart Teaching and Learning of Turkish Alphabets [Tekst] / A.L. Alyousify, R.J. Mstafa // Virtual Reality & Intelligent Hardware. 2022, V. 4, I. 3. pp. 263–277. DOI:https://doi.org/10.1016/j.vrih.2022.05.002 URL: www.doi.org/https://doi.org/10.1016/j.vrih.2022.05.002

15. Anabela M. A survey of multisensory VR and AR applications for cultural heritage [Tekst] / M. Anabela, A. Gonçalves, M. Melo, M. Besso // Computers & Graphics. 2022, V. 102, pp. 426–440. DOI:https://doi.org/10.1016/j.chb.2021.106951 URL: www. doi.org/10.1016/j.cag.2021.10.001

16. Argelia Aguilera González N. (2015). How to Include Augmented Reality in Descriptive Geometry Teaching. Procedia Computer Science, 75, pp. 250–256. DOI:https://doi.org/10.1016/j.procs.2015.12.245

17. Ariansyah D. A head monted augmented reality design practice for maintenance assembley: Toward meeting perceptual and cognitive needs of AR users [Tekst] / D. Ariansyah, J.A. Erkouncu, I. Eimontaite, T. Johnson, A.M. Oostveen, S. Fletcher, S. Sharples // Applied Ergonomics. 2022, V. 98, p. 103597. DOI: https://doi.org/10.1016/j.aper-go.2021 URL: www.doi.org/10.1016/j.apergo.2021

18. Bazarov S.E. Applying Augmented Reality in practical classes for engineering students [Tekst] / S.E. Bazarov, I. Y. Kholodilin, A.S. Nesterov, A.V. Sokhina // IOP Conference Series: Earth and Environmental Science. 2017, V. 87, p. 032004. DOI:https://doi.org/10.1088/1755-1315/87/3/032004 URL: www.doi.org/10.1088/1755-1315/87/3/032004

19. eLerning Industry [Elektronnyy resurs]. URL: https://elearningindustry.com. (data obrascheniya: 20.11.2024).

20. Hu X. Educational impact of an Augmented Reality (AR) application for teaching structural systems to non-engineering students / X. Hu, Y.M. Goh, Al. Lin // Advanced Engineering Informatics, 2021, V. 50, p. 101436. DOI:https://doi.org/10.1016/j.aei.2021.101436 URL: www.doi.org/10.1016/j. aei.2021.101436

21. International energy agency [Elektronnyy resurs]. URL: https://www.iea.org. (data obrascheniya: 20.11.2024).

22. Kharvari F. Impact of extended reality on architectural education and the design process / F. Kharvari, L.E. Kaiser //Automation in Construction. 2022, V. 141, p. 104393. —DOI:https://doi.org/10.1016/j.autcon.2022.104393 URL: www.doi.org/10.1016/j.autcon.2022.104393

23. Marino E. An Augmented Reality inspection tool to support workers in Industry 4.0 environments / E. Marino, L.Barbieri, B. Colacino, A. Kum Fleri, F. Bruno // Computers in Industry, 2021, V. 127, p. 103412. DOI:https://doi.org/10.1016/j. compind.2021.103412 URL: www.doi.org/10.1016/j.compind.2021.103412

24. Quint F. The Challenge of Introducing AR in Industry —Results of a Participative Process Involving Maintenance Engineers / F. Quint, F. Loch, P. Bertram // Procedia Manufacturing, 2017, V. 11, pp. 1319–1323. DOI:https://doi.org/10.1016/j. promfg.2017.07.260 URL: www. doi.org/10.1016/j.prom-fg.2017.07.260

25. de Ravé E.G., Jiménez-Hornero F.J., Ariza-Villaverde A.B., Taguas-Ruiz J. (2016). DiedricAR: a mobile augmented reality system designed for the ubiquitous descriptive geo- metry learning. Multimedia Tools and Applications, 75 (16), pp. 9641–9663. DOI:https://doi.org/10.1007/s11042-016-3384-4

26. Schiavi B. BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction [Tekst] / B. Schiavia, V. Havard, K. Beddiar, D. Baudry // Automation in Construction, 2022, p. 104054. DOI:https://doi.org/10.1016/j.autcon.2021.104054 URL: www.doi.org/10.1016/j.autcon.2021.104054

27. Sharma B. Assimilating Disruptive Technology: A New Approach of Learning Science in Engineering Education [Tekst] / B. Sharma, A. Mantri // Procedia Computer Science. — 2020, V. 172, pp. 915–921. DOI:https://doi.org/10.1016/j.procs.2020.05.132 URL: www.doi.org/10.1016/j.procs.2020.05.132

28. Solmaz S. A practical development of engineering simulation-assisted educational AR environments [Tekst] / S. Solmaz, J.L. Dominguez Alfaro, P. Santos, P. Van Puyvelde, T.Van Gerven // Education for Chemical Engineers, 2021, V. 35, pp. 81–93. DOI:https://doi.org/10.1016/j.ece.2021.01.007 URL: www.doi.org/10.1016/j.ece.2021.01.007

29. Sun X. Investigating Augmented Reality as a mode of representation for hearing and hearing-impaired preschool children / X. Sun, S. Zhou, Y. Zhang, Q. Wang, S. Wen // Investigating Augmented Reality as a mode of representation for hearing and hearing-impaired preschool children, 2022, p. 100523. DOI:https://doi.org/10.1016/j.ijcci.2022.100523 URL: www.doi.org/10.1016/j.ijcci.2022.100523

30. Tretyakova Z.O., Voronina M.V., Merkulova V.A. (2019) Geometric modelling of building forms using BIM, VR, AR-technology. IOP Conf. Series: Materials Science and Engineering. V. 687 (2019) 044048, I. 4, pp. 1–8. DOI:https://doi.org/10.1088/1757-899X/687/4/044048

31. Verhulst I. Do VR and AR versions of an immersive cultural experience engender different user experiences? / I. Verhulst, A. Woods, L. Whittaker, J. Bennett, P. Dalton // Computers in Human Behavior, 2021, V. 125, p. 106951. DOI:https://doi.org/10.1016/j.chb.2021.106951 URL: www.doi.org/10.1016/j.chb.2021.106951

32. Voronina M.V., Tretyakova Z.O., Krivonozhkina E.G., Buslaev S.I., Sidorenko G.G. (2019). Augmented Reality in Teaching Descriptive Geometry, Engineering and Computer Graphics — Systematic Review and Results of the Russian Teachers’ Experience. EURASIA Journal of Mathematics, Science and Technology Education, 15(12), pp. 1–17. DOI:https://doi.org/10.29333/ejmste/113503

33. Xie J. Framework for a closed-loop cooperative human Cyber-Physical System for the mining industry driven by VR and AR: MHCPS [Tekst] / J. Xie, S. Liu, X. Wanga // Computers & Industrial Engineering, 2022, V. 168, p. 108050. DOI:https://doi.org/10.1016/j.cie.2022.108050 URL: www.doi.org/10.1016/j.cie.2022.108050

Login or Create
* Forgot password?