The aim of the investigation is to determine the index of fluctuating asymmetry (FA) of goat's willow plants growing under high-voltage transmission lines and in areas subjected to pollution of atmospheric air by automobile emissions. The plants grew on the site located under 220 kV transmission line in suburban green zone of Krasnoyarsk in Nikolayevskaya Sopka area (experiment 1); at the section located under the 500 kV transmission line, 25 km from Krasnoyarsk near the Ryabinino railway station (experiment 2) and on the territory along the city road (experiment 3). To estimate the level of contamination of the latter, the number of cars passing along the road for 1 hour was calculated. Control 1 was represented by a section of suburban zone, located more than 100 m from 220 kV transmission line. As control the site which was more than 100 m from 500 kV transmission line was selected. In plants growing in these areas, the width of the left and right sides of the leaf was measured and index value of FA was calculated. The values of FA index of leaves of goat willow, determined for control variants, were 0.025-0.026, and the calculated ones for the experiments 1-3 were respectively 0.040, 0.047 and 0.034. Thus, the degree of variation of the width of the right and left half of the goat's willow leaves (the index value of FA) can be sensitive indicator when bioindication method is used to monitor the degree of anthro- pogenic load on the environment in the form of variable elec- tromagnetic field of industrial frequency. It is established that the response of plants to physical ecological factor - electro- magnetic field of the industrial frequency - expressed in the appearance of the asymmetry of the leaf, is manifested more strongly in comparison with the chemical factor - the exhaust gases of cars. The tendency of the growth of FA index ofleaves is noted with the increase of the electric voltage from 220 kV to 500 kV.
goat willow, leaf, width, asymmetry, power lines, automobile emissions, bioindication
1. Silva J.A.T., Dobránszki J. Magnetic fields: how is plant growth and development impacted? //Protoplasma. - 2015. - №. 5. - P. 1-18.
2. Cuglenok N.V., Demidenko G.A., Fomina N.V. [i dr.]. Ocenka vliyaniya elektromagnitnogo izlucheniya na prirodnye i selitebnye ekosistemy // Vestn. Kras- GAU. - 2014. - № 6. - S. 170-175.
3. Soja G., Kunsch B., Gerzabek M. [et al.]. Growth and yield of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) near a high voltage transmission line // Bioelectromagnetics. - 2003. - Vol. 24. - №. 2. - R. 91-102.
4. Shashurin M.M., Prokop'ev I.A., Shein A.A. [i dr.]. Otvetnaya reakciya podorozhnika srednego na deystvie elektromagnitnogo polya promyshlennoy chastoty (50 Gc) // Fiziologiya rasteniy. - 2014. - T. 61. - № 4. - S. 517-524.
5. Fatigoni C., Dominici L., Moretti M. [et al.]. Genotoxic effects of extremely low frequency (ELF) magnetic fields (MF) evaluated by the Tradescantia-micronucleus assay //Environmental Toxicology. - 2005. - Vol. 20. - № 6. - R. 585-591.
6. Sarokvasha O.Yu. Ekologo-biohimicheskiy monitoring sostava pochvy v zone razmescheniya linii elektroperedachi goroda Bezenchuk Samarskoy oblasti: dis.. kand. biol. nauk: 03.00.16, 03.00.04. - Sama- ra, 2007. - 197 s.
7. Alemán E.I., Moreira R.O., Lima A.A. [et al.]. Effects of 60 Hz sinusoidal magnetic field on in vitro establish- ment, multiplication, and acclimatization phases of Coffea arabica seedlings // Bioelectromagnetics. - 2014. - Vol. 35. - № 6. - R. 414-425.
8. Stange B.C., Rowland R.E., Rapley B.I. [et al.]. ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane //Bioelectromagnetics. - 2002. - Vol. 23. - № 5. - R. 347-354.
9. Novitskii Y.I., Novitskaya G.V., Serdyukov Y.A. Lipid utilization in radish seedlings as affected by weak hori- zontal extremely low frequency magnetic field // Bioelectromagnetics. - 2014. - Vol. 35. - № 2. - R. 91- 99.
10. Metodicheskie rekomendacii po vypolneniyu ocenki kachestva sredy po sostoyaniyu zhivyh suschestv: Rasporyazhenie Rosekologii ot 16 oktyabrya 2003 g. № 460-r. - M., 2003. - 24 s.
11. Baranov S.G. Vliyanie vysokovol'tnyh liniy na fluktuiruyuschuyu asimmetriyu berezy povisloy // Zhizn' bez opasnostey. Zdorov'e. Profilaktika. Dolgoletie. - 2014. - № 1. - S. 76-80.
12. Freeman D.C., Graham J.H., Tracy M. [et al.]. Devel- opmental Instability as a Means of Assessing Stress in Plants: A Case Study Using Electromagnetic Fields and Soybeans // International Journal of Plant Sciences. - 1999. - Vol. 160. - № 6. - R. 157-166.
13. Neustroeva M.V. Ocenka ekologicheskogo sostoyaniya prirodno-territorial'nyh kompleksov: monitoring, ocenka kachestva komponentov okruzhayuschey sredy / Krasnoyar. gos. ped. un-t im. V.P. Astaf'eva. - Krasnoyarsk, 2006. - 372 s.
14. Kozlov M.V., Wilsey B.J., Koricheva J. Fluctuating asymmetry of birch leaves increases under pollution impact // Journal of Applied Ecology. - 1996. - Vol. 33. - № 6. - P.
15. 1489-1495. Zhang H., Wang X. Leaf developmental stability of Platanus acerifolia under urban environmental stress and its implication as an environmental indicator // Fron- tiers of Biology in China. - 2006. - Vol. 1. - № 4. - P. 411-417.
16. Zorina A.A., Korosov A.V. Harakteristika fluktuiruyuschey asimmetrii lista dvuh vidov berez v Karelii // Ekologiya. Eksperimental'naya genetika i fiziologiya: tr. Karel. nauch. centra RAN. - 2007. - Vyp. 11. - S. 28-36.
17. Kalaev V.N., Ignatova I.V., Tret'yakova V.V. [i dr.]. Bioindikaciya zagryazneniya rayonov g. Voronezha po velichine fluktuiruyuschey asimmetrii listovoy plastinki berezy povisloy // Vestn. Voronezh. gos. un-ta. Ser. Himiya, biologiya, farmaciya. - 2011. - № 2. - S. 168-175.
18. Mandra Yu.A., Eremenko R.S. Bioindikacionnaya ocenka sostoyaniya okruzhayuschey sredy goroda Kislo- vodska na osnove analiza fluktuiruyuschey asimmetrii // Izvestiya Samarskogo nauchnogo centra RAN. - 2010. - T. 12. - № 1(8). - S.
19. 1990-1994. Chernyh E.P., Pervyshina G.G., Gogoleva O.V. Ocenka ekologicheskogo blagopoluchiya territorii g. Krasnoyarska s ispol'zovaniem cheremuhi obyknovennoy v kachestve bioindikatora // Vestn. KrasGAU. - 2014. - № 1. - S. 96-100.
20. Bauréus Koch C.L.M., Sommarin M., Persson B.R.R. [et al.]. Interaction between weak low frequency mag- netic fields and cell membranes // Bioelectromagnetics. - 2003. - Vol. 24. - № 6. - R. 395-402.
21. Dattilo A.M., Bracchini L., Loiselle S.A. [et al.]. Morpho- logical anomalies in pollen tubes of Actinidia deliciosa (kiwi) exposed to 50 Hz magnetic field // Bioelectromagnetics. - 2005. - Vol. 26. - № 2. - R. 153-156.
22. Volpe P., Eremenko T. Mechanisms of the target re- sponse to magnetic fields and their correlation with the biological complexity // The Environmentalist. - 2007. - Vol. 27. - № 4. - R. 387-393.
23. Selezneva E.M., Anisimov V.S., Goncharova L.I. [i dr.]. Vliyanie svinca i ul'trafioletovogo izlu- cheniya na produktivnost' rasteniy i nakoplenie me- talla v zerne yarovogo yachmenya // Agrohimiya. - 2005. - № 5. - S. 82-86.