THE ESTIMATION OF FUZZY BOUNDARY OF MULTIOPERATIONAL MACHINE TOOL LIFE
Abstract and keywords
Abstract (English):
The purpose of this paper is to present the basic principles of the construction and operation of monitoring systems of the tool con-dition, and the machine tooling backup man-agement in the com-puter-aided manufacturing. The proposed approach is focused on creating conditions for the effective tool state management. For this, the application of the intelligent host control module on the basis of the interactive electronic technical documentation of the mechatronic technological object is proposed. Valuation principles of the tool life fuzzy boundary are fully considered on the basis of the of fuzzy knowledge theory. Three methods for estimating the parameters of the resistance fuzzy boundary are presented. A neural network which operates on the basis of the developed fuzzy prediction rule base of the cutting tool wear depending on the instrument status and its impact on the part cutting accuracy is built. The results obtained are applicable in the sphere of the industrial engineering.

Keywords:
multioperational machine, tool state monitoring, knowledge system, the management of tool software, fuzzy boundary resistance
Text

В условиях автоматизированного производства довольно широко применяются многооперационные станки 

(обрабатывающие центры) с числовым программным управление (ЧПУ). Перспективным направлением повышения 

качества обработки представляется создание и применение интеллектуальных систем управления технологическим 

оборудованием. Таким образом обеспечивается изготовление деталей с учетом состояния:

— станка;

— режущего инструмента;

— заготовки;

— информационно-измерительной подсистемы.

References

1. Hernendez, J., et al. Sensor Fused Intelligent Monitoring System for Machining. European Module IMS Project EP 26504. Final Report; European IMS-SIMON consortium. 152 p. Available at: http://www.ims.org/2012/11/simon-sensor-fused-intelligent-monitoring-system-for-machining/ (accessed: 03.12.2014).

2. Grigoryev, S. N., Gurin, V. D., Cherkasova, N. Y. Povyshenie proizvoditel´nosti frezerovaniya s pomoshch´yu di-agnostirovaniya sostoyaniya instrumenta s uchetom dostovernosti otobrazheniya sostoyaniya ob´´ekta po kriteriyu ego otkaza. [Milling rate improvement using tool status diagnostics with account for the reliability of the object status display by its failure criterion.] Vestnik MSTU “Stankin”, 2011, no. 3 (15), pp. 44–48 (in Russian).

3. Kocherovskiy, Е. V., Lichtser, G. M. Diagnostika sostoyaniya instrumenta po silovym kharakteristikam protsessa rezaniya. [Tool status diagnostics on the cutting process power characteristics.] Moscow: VNIITEMR, 1988, 40 p. (in Russian).

4. Tugengold, А. К., Kuzmin, А. А. Modelirovanie bazy znaniy sistemy upravleniya mekhatronnym ob´´ektom. [Mod-eling of mechatronic object management system knowledgebase.] Izvestiya vuzov. Severo-Kavkazskiy region. Technical Sci-ences, 2009. Special iss. “Mekhatronika. Sovrem. sost. i tendentsii razvitiya” [Mechatronics. Current state and development trends.] pp. 69–73 (in Russian).

5. Tugengold, А. К., Berdichevskiy, A. A. Smart-pasport mekhatronnogo tekhnologicheskogo ob´´ekta. Kontsept. [Smart-passport of mechatronic production facility. Concept.] Vestnik of DSTU, 2012, no. 7, pp. 33–41 (in Russian).

6. Tugengold, А. К. Smart-Passport otkrytoy mekhatronnoy tekhnologicheskoy sistemy. Kontent. [Smart-Passport of open mechatronic manufacturing system. Content.] Saarbrucken : Lambert Academic Publishing, 2013, 83 p. (in Russian).

7. Tugengold, А. К., Izyumov, A. I. Printsipy kontseptual´nogo podkhoda k sozdaniyu podsistemy «INSTRUMENT» v smart-pasporte mnogooperatsionnogo stanka. [Principles of conceptual approach to creating TOOL subsystem for multioper-ation machine smart-passport.] Vestnik of DSTU, 2014, no. 2, pp. 33–41 (in Russian).

8. Sinopalnikov, V. A., Grigoryev, S. N. Nadezhnost´ i diagnostika tekhnologicheskikh sistem. [Reliability and diag-nostics of process systems.] Moscow: Vysshaya shkola, 2005, 343 p. (in Russian).

9. Serebrenitskiy, P. P. Kratkiy spravochnik tekhnologa-mashinostroitelya. [Quick reference book for mechanic engi-neer-technologist.] Sankt-Peterburg: Politekhnika, 2007, 951 p. (in Russian).

10. Pronikov, A. S. Nadezhnost´ mashin. [Machine reliability.] Moscow: Mashinostroenie, 1978, 592 p. (in Russian).

11. Čuš, F., Župerl, U. Real-Time Cutting Tool Condition Monitoring in Milling. Strojniški vestnik — Journal of Mechanical Engineering, 2011, no. 57 (2), pp. 142–150.

12. Bagci, E. Monitoring and analysis of MRR-based feedrate optimization approach and effects of cutting conditions using acoustic sound pressure level in free-form surface milling. Scientific Research and Essays, 2011, vol. 6 (2), pp. 256–277.

13. Shtovba, S. D. Proektirovanie nechetkikh sistem sredstvami MATLAB. [Design of fuzzy systems by means of MATLAB.] Moscow: Goryachaya liniya — Telekom, 2007, 288 p. (in Russian).

14. Dimitrov, V. P., Borisova, L. B., Nurutdinova, I. N. Metodika otsenki soglasovannosti modeley nechetkikh ek-spertnykh znaniy. [Methods for estimating coordination of fuzzy expert knowledge models.] Vestnik of DSTU, 2010, vol. 10, no. 2 (45), pp. 205–216 (in Russian).

15. Shirokov, A. V., comp. Algoritmy vybora instrumentov firm Sandwik Coromant i Walter. [Algorithms for select-ing tools by Sandwik Coromant and Walter companies.] Samara: Samara State Technical University, 2011, 33 p. (in Russian).

Login or Create
* Forgot password?