Analysis of studies, observed results of geophysical surveys in areas contaminated with LNAPL
Abstract and keywords
Abstract (English):
Oil pollution significantly affects the ecosystem of underground space. The penetration of hydrocarbons into aquifers threatens to spread pollution over large areas from the source. Pollutants cause damage to natural environments and lead to damage and destruction of ecosystems. To solve environmental problems in the search for hydrocarbon pollution, geophysics is often used. In contaminated sites, knowledge of the geological structure and hydrogeological conditions, as well as the qualitative and quantitative characteristics of pollution, is essential for risk assessment and site remediation planning. Despite the fact that many geophysical methods have proven their effectiveness in solving geoecological problems, pollution of the underground environment is complex. This is primarily due to the fact that the distribution of the pollutant has an impact on both the geological and mechanical components of soils, and the biological and chemical ones. The article discusses the influence of various factors on the formation of anomalies detected by methods of shallow geophysics in the process of studying the pollution of the geological environment with oil products. The main purpose of such work is the detection, contouring and determination of the migration routes of light oil products. The paper describes several generalized models of the distribution of hydrocarbon pollution, each of which can be used to solve the set tasks, as well as be a useful tool for predicting the distribution of oil products and modeling geophysical responses from a multifactorial environment. Among the factors influencing the results of geophysical studies, a special position is occupied by biodegradation processes, as a result of which significant changes in the physical properties of the medium occur.

Keywords:
light non-aqueous phase liquid (LNAPL), electrical exploration, seismic exploration, microbe, hydrogeology, underground space, monitoring
Text
Publication text (PDF): Read Download
References

1. Alekseev I. V., Dashko R. E. K voprosu o roli biokorrozionnyh processov v podzemnoy srede megapolisov // Inzhenernaya geologiya. — 2016. — № 1. — S. 22—29.

2. Glazunov V. V., Ageev A. S., Gorelik G. D. i dr. Rezul'taty kompleksnyh geofizicheskih issledovaniy po poisku sklepov na territorii zagorodnogo nekropolya Hersonesa Tavricheskogo v Karantinnoy balke // Zapiski Gornogo instituta. — 2021. — T. 247. — S. 1—9. — DOI: 10.31897/PMI.2021.1.2.

3. Grigor'ev G. S., Salischev M. V., Senchina N. P. O primenimosti sposoba elektromagnitnogo monitoringa gidrorazryva plasta // Zapiski Gornogo instituta. — 2021. — T. 250. — S. 492—500. — DOI: 10.31897/PMI.2021.4.2.

4. Gupalo V. S. Prioritetnye parametry fizicheskih processov v massive porod pri opredelenii bezopasnosti zahoroneniya radioaktivnyh othodov // Zapiski Gornogo instituta. — 2020. — T. 241. — S. 118. — DOI: 10.31897/pmi.2020.1.118.

5. Maksimovich N. G., Hayrulina E. A. Geohimicheskie bar'ery i ohrana okruzhayuschey sredy: uchebnoe posobie. — Perm' : Perm. gos. u-t., 2011. — S. 248.

6. Movchan I. B., Shaygallyamova Z. I., Yakovleva A. A. Vyyavlenie faktorov strukturnogo kontrolya korennyh zolotorudnyh proyavleniy metodom bespilotnoy aeromagnitorazvedki na primere Neryungrinskogo rayona Yakutii // Zapiski Gornogo instituta. — 2022. — T. 254. — 217—233. — DOI: 10.31897/pmi.2022.23.

7. Pashkevich M. A., Bek D., Matveeva V. A. i dr. Biogeohimicheskaya ocenka sostoyaniya pochvenno-rastitel'nogo pokrova v promyshlennyh, selitebnyh i rekreacionnyh zonah SanktPeterburga // Zapiski Gornogo instituta. — 2020. — T. 241. — S. 125. — DOI: 10.31897/pmi.2020.1.125.

8. Putilina V. S., Galickaya I. V., Yuganova T. I. Transformaciya nefti i nefteproduktov v pochvah, gornyh porodah, podzemnyh vodah. Zagryaznenie, infil'traciya, migraciya, degradaciya. Metabolity // Ekologiya. Seriya analiticheskih obzorov mirovoy literatury. — 2019. — T. 108. — S. 111.

9. Ryazancev P. A., Nilova M. V., Belohvostik D. M. Monitoring migracii nefteprodukta v laboratornyh usloviyah s ispol'zovaniem metodiki elektrotomografii // Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya. — 2017. — № 6. — S. 83—94.

10. Sarapulova G. I. Geohimicheskiy podhod v ocenke vozdeystviya tehnogennyh ob'ektov na pochvy // Zapiski Gornogo instituta. — 2020. — T. 243. — S. 388. — DOI: 10.31897/pmi.2020.3.388.

11. Titov K. V., Il'in Yu. T., Konosavskiy P. K. i dr. Izmenenie geofizicheskih svoystv zagryaznennogo nefteproduktami peska pri bakterial'nom vozdeystvii // Geoekologiya, inzhenernaya geologiya, gidrogeologiya, geokriologiya. — 2012. — №5. — S. 455—469.

12. Shulaev N. S., Pryanichnikova V. V., Kadyrov R. R. Zakonomernosti elektrohimicheskoy ochistki neftezagryaznennyh gruntov // Zapiski Gornogo instituta. — 2021. — T. 252. — S. 937— 946. — DOI: 10.31897/PMI.2021.6.15.

13. Abdel Aal G. Z., Atekwana E. A., Slater L. D., et al. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments // Geophysical Research Letters. — 2004. — Vol. 31, no. 12. — P. L12505. — DOI:10.1029/2004gl020030.

14. Amos R. T., Mayer K. U., Bekins B. A., et al. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface // Water Resources Research. — 2005. — Vol. 41, no. 2. — W02001. — DOI: 10.1029/2004WR003433.

15. Atekwana E. A., Atekwana E., Legall F. D., et al. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer // Journal of Contaminant Hydrology. — 2005. — Nov. — Vol. 80, no. 3/4. — P. 149–167. — DOI: 10.1016/j.jconhyd.2005.06.009.

16. Atekwana E. A., Atekwana E. A., Rowe R. S., et al. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon // Journal of Applied Geophysics. — 2004. — Vol. 56, no. 4. — P. 281–294. — DOI: 10.1016/j.jappgeo.2004.08.003.

17. Atekwana E. A., Atekwana E. A. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review // Surveys in Geophysics. — 2010. — Vol. 31, no. 2. — P. 247–283. — DOI: 10.1007/s10712-009-9089-8.

18. Che-Alota V., Atekwana E. A., Atekwana E. A., et al. Temporal geophysical signatures from contaminant-mass remediation // Geophysics. — 2009. — Vol. 74, no. 4. — B113–B123. — DOI:10.1190/1.3139769.

19. Deceuster J., Kaufmann O. Improving the delineation of hydrocarbon-impacted soils and water through induced polarization (IP) tomographies: A field study at an industrial waste land // Journal of Contaminant Hydrology. — 2012. — Vol. 136/137. — P. 25–42. — DOI:10.1016/j.jconhyd.2012.05.003.

20. DeRyck S. M., Redman J. D., Annan A. P. Geophysical Monitoring Of A Controlled Kerosene Spill // 6th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. — European Association of Geoscientists & Engineers, 2020. — DOI: pdb.209.1993_003.

21. Essaid H. I., Bekins B. A., Herkelrath W. N., et al. Crude Oil at the Bemidji Site: 25 Years of Monitoring, Modeling, and Understanding // Ground Water. — 2011. — Vol. 49, no. 5. — P. 706– 726. — DOI: 10.1111/j.1745 6584.2009.00654.x.

22. Fiori A., Benedetto A., Romanelli M. Application of the effective medium approximation for determining water contents through GPR in coarse-grained soil materials // Geophysical Research Letters. — 2005. — Vol. 32, no. 9. — P. L09404. — DOI: 10.1029/2005GL022555.

23. Flores Orozco A., Micić V., Bücker M., et al. Complex-conductivity monitoring to delineate aquifer pore clogging during nanoparticles injection // Geophysical Journal International. — 2019. — June. — Vol. 218, no. 3. — P. 1838–1852. — DOI: 10.1093/gji/ggz255.

24. Flores Orozco A., Williams K. H., Long P. E., et al. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer // Journal of Geophysical Research: Biogeosciences. — 2011. — Vol. 116. — G03001. — DOI: 10.1029/2010JG001591.

25. Garg S., Newell C. J., Kulkarni P. R., et al. Overview of Natural Source Zone Depletion: Processes, Controlling Factors, and Composition Change // Groundwater Monitoring & Remediation. — 2017. — Vol. 37, no. 3. — P. 62–81. — DOI:10.1111/gwmr.12219.

26. Giampaolo V., Rizzo E., Titov K., et al. Selfpotential monitoring of a crude oil-contaminated site (Trecate, Italy) // Environmental Science and Pollution Research. — 2014. — Vol. 21, no. 15. — P. 8932–8947. — DOI: 10.1007/s11356-013-2159-y.

27. Gieg L. M., Fowler S. J., Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants // Current Opinion in Biotechnology. — 2014. — Vol. 27. — P. 21–29. — (Energy biotechnology, Environmental biotechnology). — DOI: 10.1016/j.copbio.2013.09.002.

28. Griebler C., Lueders T. Microbial biodiversity in groundwater ecosystems // Freshwater Biology. — 2009. — Vol. 54, no. 4. — P. 649–677. — DOI:10.1111/j.1365-2427.2008.02013.x.

29. Irianni-Renno M., Akhbari D., Olson M. R., et al. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body // Applied Microbiology and Biotechnology. — 2016. — Vol. 100, no. 7. — P. 3347–3360. — DOI: 10.1007/s00253-015-7106-z.

30. Johansson S., Fiandaca G., Dahlin T. Influence of non-aqueous phase liquid configuration on induced polarization parameters: Conceptual models applied to a time-domain field case study // Journal of Applied Geophysics. — 2015. — Vol. 123. — P. 295–309. — DOI: 10.1016/j.jappgeo.2015.08.010.

31. Khan F. I., Husain T., Hejazi R. An overview and analysis of site remediation technologies // Journal of Environmental Management. — 2004. — Vol. 71, no. 2. — P. 95–122. — DOI: 10.1016/j.jenvman.2004.02.003

32. Kulkarni P. R., King D. C., McHugh T. E., et al. Impact of Temperature on Groundwater Source Attenuation Rates at Hydrocarbon Sites // Groundwater Monitoring & Remediation. — 2017. — Vol. 37, no. 3. — P. 82–93. — DOI: 10.1111/gwmr.12226

33. Martinho E., Almeida F., Senos Matias M. An experimental study of organic pollutant effects on time domain induced polarization measurements // Journal of Applied Geophysics. — 2006. — Vol. 60, no. 1. — P. 27–40. — DOI: 10.1016/j.jappgeo.2005.11.003.

34. Meckenstock R. U., Netzer F. von, Stumpp C., et al. Water droplets in oil are microhabitats for microbial life // Science. — 2014. — Vol. 345, no. 6197. — P. 673–676. — DOI: 10.1126/science.1252215.

35. Mellage A., Smeaton C. M., Furman A., et al. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments // Environmental Science & Technology. — 2018. — Vol. 52, no. 4. — P. 2081–2090. — DOI: 10.1021/acs.est.7b04420.

36. Miller A. A., Gorelik G. D., Budanov L. M. Substantiation of the Optimal Gis Complex for the Allocation of Water-Containing Reservoirs on the Example of the Analysis of Well Logging Results in the Leningrad Region. — 2019. — DOI 10.3997/2214-4609.201901693.

37. Naudet V., Revil A., Bottero J.-Y., et al. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater // Geophysical Research Letters. — 2003. — Vol. 30, no.21. — P. 2091. — DOI: 10.1029/2003GL018096.

38. Ng G.-H. C., Bekins B. A., Cozzarelli I. M., et al. Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN // Water Resources Research. — 2015. — Vol. 51, no. 6. — P. 4156– 4183. — DOI: 10.1002/2015WR016964.

39. Ntarlagiannis D., Yee N., Slater L. On the low-frequency electrical polarization of bacterial cells in sands // Geophysical Research Letters. — 2005. — Vol. 32, no. 24. — P. L24402. — DOI: 10.1029/2005GL024751.

40. Rosenberry D. O., Glaser P. H., Siegel D. I. The hydrology of northern peatlands as affected by biogenic gas: current developments and research needs // Hydrological Processes. — 2006. — Vol. 20, no. 17. — P. 3601–3610. — DOI: 10.1002/hyp.6377.

41. Sauck W. A. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments // Journal of Applied Geophysics. — 2000. — Vol. 44, no. 2. — P. 151–165. — DOI: 10.1016/S0926-9851(99)00021-X.

42. Schmutz M., Blondel A., Revil A. Saturation dependence of the quadrature conductivity of oilbearing sands // Geophysical Research Letters. —2012. — Vol. 39, no. 3. — P. L03402. — DOI: 10.1029/2011GL050474.

43. Shestakov A. K., Sadykov R. M., Petrov P. A. Multifunctional crust breaker for automatic alumina feeding system of aluminum reduction cell // E3S Web Conf. — 2021. — Vol. 266. — P. 09002. — DOI: 10.1051/e3sconf/202126609002.

44. Smith K. A., Ball T., Conen F., et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes // European Journal of Soil Science. — 2018. — Vol. 69, no. 1. — P. 10–20. — DOI: 10.1111/ejss.12539.

45. Spokas K. A., Bogner J. E. Limits and dynamics of methane oxidation in landfill cover soils // Waste Management. — 2011. — Vol. 31, no. 5. —P. 823–832. — DOI: 10.1016/j.wasman.2009.12.018.

46. Suthersan S., Koons B., Schnobrich M. Contemporary Management of Sites with Petroleum LNAPL Presence // Groundwater Monitoring & Remediation. — 2015. — Vol. 35, no. 1. — P. 23–29. — DOI: 10.1111/gwmr.12099.

47. Titov K., Kemna A., Tarasov A., et al. Induced Polarization of Unsaturated Sands Determined through Time Domain Measurements // Vadose Zone Journal. — 2004. — Vol. 3, no. 4. — P. 1160–1168. — DOI: 10.2136/vzj2004.1160.

48. Wang Y.-y., Guo X.-j., Shao S., et al. Abnormal features analysis and status evaluation for oil contaminated site in capillary zone based on ground penetrating radar // Progress in Geophysics. — 2018. — Vol. 33, no. 5. — P. 2172–2180. — DOI: 10.6038/pg2018BB0365.

49. Yang M., Yang Y. S., Du X., et al. Fate and Transport of Petroleum Hydrocarbons in Vadose Zone: Compound-specific Natural Attenuation // Water, Air, & Soil Pollution. — 2013. — Vol. 224, no.3— P. 1439. — DOI: 10.1007/s11270013-1439-y.

50. Zeman N. R., Irianni Renno M., Olson M. R., et al. Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure // Biodegradation. — 2014. — Vol. 25, no. 4. — P. 569–585. — DOI:10.1007/s10532-014-9682-5.

Login or Create
* Forgot password?