FORECASTING LOCOMOTIVE RUN DYNAMICS GIVEN THE IMPACT OF DEFECTS AND OF JUNCTION UP-GRADING
Abstract and keywords
Abstract (English):
Purpose: To improve planning system for depot and factory repairs and for locomotive up-grades in the conditions of new rolling stock delivery on the basis of life-cycle contract by the way of the development and application of mathematical model for prognosing average daily and linear runs given the impact on run of technical-technological, seasonal and random fac-tors as well as defects, limiting junctions, and their upgrading. Methods: To achieve the set goal realization, the impact assessment for non-productive downtime of new locomotives at repairs as a result of clearing of junction defects and an equipment and of downtime in wait-ing for planned repairs on dynamics of average daily and linear runs was carried out. Based on the method of multidimensional spectral singular analysis and the prognosis of time series Multi-Channel Singular Spectrum Analysis, the mathematical model on run prognosis which algorithm for, has been embodied in integrated programming environment Visual Studio (2019) on C++ programming codes. Results: Run determination method given junction and equipment possible defects and given being planned upgrading has been proposed. Practical importance: In the conditions of life-cycle contract application which frames in, the participa-tion of locomotives and their components manufacturers in the technical support of supplied products throughout their entire service-life is implied, the usage of the proposed model at re-pair program monthly, quarterly and annual planning, would reduce the downtime in waiting for putting into a repair position on account of more accurate forecast, rationally distributed repairs, materials, stock of linear equipment between service manufactures.

Keywords:
Traction rolling stock, electric locomotive, scheduled preventive repair system, locomotive re-pair, repair planning, prognosis of time series, average daily run, junction upgrading
Text
Publication text (PDF): Read Download
References

1. Davydov Yu. A. Ocenka vliyaniya sistemnyh neispravnostey lokomotivov na srednesutochnyy probeg / Yu. A. Davydov, O. O. Muhin, V. V. Zabolotnyy // Izvestiya Transsiba. — 2021. — № 3(47). — S. 31–41.

2. Muhin O. O. Matematicheskaya model' prognozirovaniya srednesutochnogo probe-ga lokomotivov / O. O. Muhin // Sovremennye tehnologii. Sistemnyy analiz. Mode-lirovanie. — 2022. — № 1(73). — S. 123–132.

3. Davydov Yu. A. Sovershenstvovanie sistemy podderzhki zhiznennogo cikla lo-komotivov / O. O. Muhin, Yu. A. Davydov, V. V. Zabolotnyy // Sovremennye tehnolo-gii. Sistemnyy analiz. Modelirovanie. — 2021. — № 3(71). — S. 92–101.

4. Stepanov D. Varianty metoda «Gusenica»-SSA dlya prognoza mnogomernyh vremennyh ryadov / D. Stepanov, N. Golyandina // Identifikaciya sistem i zadachi upravleniya: trudy IV Mezhdunarodnoy konferencii. — M., 2005. — S. 1831–1848.

5. Golyandina N. Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package / N. Golyandina, A. Korobeynikov, A. Shlemov et al. // Journal of Statistical Software. — 2015. — Vol. 67. — Iss. 2. — Pp. 1–78.

6. Golyandina N. E. Obrabotka mnogomernyh vremennyh ryadov s pomosch'yu metoda «Gusenica» // Glavnye komponenty vremennyh ryadov: metod «Gusenica» / N. E. Golyan-dina, D. L. Danilov; pod red. D. L. Danilova, A. A. Zhiglyavskogo. — SPb.: SPbGU, 1997. — S. 105–131.

7. Nadtoka I. I. Dvumernyy metod singulyarnogo spektral'nogo analiza pri mo-delirovanii processa pochasovogo elektropotrebleniya letnego perioda / I. I. Nadto-ka, O. A. Kornyukova, S. A. Vyalkova i dr. // Izvestiya vuzov. Elektromehanika. — 2012. — № 2 — S. 26–30.

8. Ivanova K. A. Planirovanie ob'ema gruzoperevozok na stanciyah VSZhD meto-dom «SSA-Gusenica» / K. A. Ivanova, V. V. Tirskih // Informatizaciya i virtualiza-ciya ekonomicheskoy i social'noy zhizni: materialy VII Vserossiyskoy studencheskoy nauchno-prakticheskoy konferencii s mezhdunarodnym uchastiem. Irkutsk, 20 noyabrya 2019 g. — Irkutsk: Irkutskiy nacional'nyy issledovatel'skiy tehnicheskiy uni-versitet, 2019. — S. 230–235.

9. Kulinich Yu. M. Prognozirovanie stoimosti elektroenergii i sostoyaniya izo-lyacii elektrooborudovaniya / Yu. M. Kulinich, S. A. Shuharev // Modelirovanie, opti-mizaciya i informacionnye tehnologii. — 2020. — T. 8. — № 3(30).

10. Ivanov V. V. Prognozirovanie sutochnyh ob'emov passazhirskih perevozok v Moskovskom metropolitene / V. V. Ivanov, E. S. Osetrov // Pis'ma v zhurnal Fizika elementarnyh chastic i atomnogo yadra. — 2018. — T. 15. — № 1(213). — S. 88–108.

11. Trofimova V. Sh. Ekonomiko-matematicheskoe modelirovanie i prognoziro-vanie elektropotrebleniya promyshlennogo predpriyatiya (na primere OAO «MMK») / V. Sh. Trofimova // Ekonomika, statistika i informatika. Vestnik UMO. — 2010. — № 4. — S. 109–114.

12. Tashilova A. A. Strukturnyy analiz i prognoz zimnih osadkov metodom «Caterpillar»-SSA / A. A. Tashilova, L. A. Kesheva, S. B. Balkarova i dr. // Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk. — 2013. — T. 15. — № 1. — S. 106–114.

13. Golyandina N. Basic Singular Spectrum Analysis and Forecasting with R. / N. Gol-yandina, A. Korobeynikov // Computational Statistics and Data Analysis. — 2014. — Vol. 71. — Pp. 934–954.

14. Harmouche J. The Sliding Singular Spectrum Analysis: a Data-Driven Non-Stationary Signal Decomposition Tool / J. Harmouche, D. Fourer et al. // IEEE Transactions on Signal Processing. — 2018. — Iss. 66(1). — Pp. 251–263.

Login or Create
* Forgot password?