OVERVIEW OF METHODS FOR MEASURING THE MECHANICAL STRENGTH OF THIN FILMS
Abstract and keywords
Abstract (English):
This review article discusses methods for measuring the main mechanical properties of thin films: tensile testing, indentation, evaluation of the mechanical strength margin for the curvature of the plate-thin film system, bulge method and research using a deformed and resonant cantilever. In the process of critical analysis of domestic and foreign literary sources, the advantages and disadvantages of the methods were revealed; the authors' motivation for conducting such studies was explained. In addition to the existing widely used methods, an original and relatively new technique is given - the use of electric current as a controlled means of applying thermo mechanical stresses to electrical conductors to characterize their fatigue behavior. Approaches for increasing the mechanical strength of thin films are also indicated.

Keywords:
Mechanical properties, strength, yield strength, mechanical stresses, Young's modulus, grain size, material fatigue, thin films, defects, deformation, MEMS
References

1. Technique for Analyzing Volumetric Defects Using Digital Elevation Model of a Surface / A.A. Dedkova, I.V. Florinsky, E.E. Gusev [et. al.] // Russian Journal of Nondestructive Testing. – 2021. – Vol. 57(11). – Pp. 1000–1007. – DOI: 10.31857/S01303082211100.

2. Fonseca, D.J. On MEMS Reliability and Failure Mechanisms / D.J. Fonseca, M. Sequera // International Journal of Quality, Statistics and Reliability. – 2011. – P. 1–7. - DOI: 10.1155/2011/820243.

3. Microelectromechanical System Sensor Market by Type and Application: Global Opportunity Analysis and Industry Forecast, 2019-2026, Allied Market Research. – URL: Microelectromechanical System Market by Type, and Application: Global Opportunity Analysis and Industry Forecast, 2019-2026 (researchandmarkets.com) (data obrascheniya: 07.07.2022).

4. Microelectromechanical Systems for Nanomechanical Testing: Electrostatic Actuation and Capacitive Sensing for High-Strain-Rate Testing / C. Li, D. Zhang, G. Cheng, Y. Zhu // Experimental Mechanics. – 2020. – Vol. 60. – P. 329–343. – DOI: 10.1007/s11340-019-00565-5.

5. Khan, N. Design and development of a MEMS butterfly resonator using synchronizing beam and out of plane actuation / N. Khan, M.J. Ahamed // Microsystem Technologies. – 2020. – Vol. 26. – Pp. 1643-1652. – DOI: 10.1007/s00542-019-04705-8.

6. Thermal Management Using MEMS Bimorph Cantilever Beams / R.A. Coutu Jr, R.S. LaFleur, J.P.K. Walton [et al.] // Experimental Mechanics. – 2016. – Vol. 56. –Pp. 1293–1303. – DOI: 10.1007/s11340-016-0170-1.

7. Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentation / D.M. Jarząbek, M. Milczarek, S. Nosewicz [et al.] // Metall Mater Trans A. – 2020. – Vol. 51. – Pp. 1625–1633. – DOI: 10.1007/s11661-020-05648-w.

8. Rosenmayer, C.T. Mechanical Testing of Thin Films / C.T. Rosenmayer, F.R. Brotzen, R.J. Gale // MRS Online Proceedings Library. – 1988. – Vol. 130. – Pp. 77–86. – DOI: 10.1557/PROC-130-77.

9. Brotzen, F.R. Mechanical testing of thin films / F.R. Brotzen, S. Moore // International Materials Reviews. – 1994. – Vol. 39. Pp. 24-45. – DOI: 10.1179/095066094790150973.

10. Tensile Properties of FreeStanding Aluminum Thin Films / D.T. Read, Y.W. Cheng, R.R. Keller, J.D. McColskey // Scripta Materialia.- 2001. – Vol. 45 (5). – Pp. 583–589.

11. A New Method for Tensile Testing of Thin Films / J.A. Ruud, D. Josell, F. Spaepen, A.L. Greer // Journal of Materials Research. – 1993. – Vol. 8(1). – Pp. 112–117. - DOI: 10.1017/S0884291400120412.

12. Espinosa, H.D. Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension / H.D. Espinosa, B.C. Prorok, B. Peng // Journal of the Mechanics and Physics of Solids. – 2004. – Vol. 52(3). – Pp. 667–689. - DOI: 10.1016/J.JMPS.2003.07.001.

13. Haque, M.A. Deformation Mechanisms in Free-Standing Nanoscale Thin Films: A Quantitative in situ Transmission Electron Microscope Study / M.A. Haque, M.T.A. Saif // Proceedings of the National Academy of Sciences of the United States of America. – 2004. – Vol. 101(17). – Pp. 6335–6340. – DOI: 10.1073/PNAS.0400066101.

14. Ruoff, A.L. The Fracture and Yield Strengths of Diamond, Silicon and Germanium / Ruoff, A.L. // High-Pressure Science and Technology. Springer, Boston, MA, 1979. – Pp. 1557–1580. – DOI: 10.1007/978-1-4684-7470-1_194.

15. Vanlandingham, M.R. Review of Instrumented Indentation / M.R. Vanlandingham // Journal of Research of the National Institute of Standards and Technology. – 2003. – Vol. 108(4). – Pp. 249–265. – DOI: 10.6028/jres.108.024.

16. Marchesini, O. Vickers Indentation Curves of Magnesium-Oxide (MgO) / O. Marchesini, G. Meille // Journal of Tribology-Transactions of the ASME. – 1984. – Vol. 106(1). – Pp. 43–48. – DOI: 10.1115/1.3260865.

17. Doerner, M.F. A Method for Interpreting the Data from Depth-Sensing Indentation Measurements / M.F. Doerner, W.D. Nix // Journal of Materials Research. – 1986. – Vol. 1(4). – Pp. 601–616. – DOI: 10.1557/JMR.1986.0601.

18. Oliver, W.C. An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments / W.C. Oliver, G.M. Pharr // Journal of Materials Research. – 1992. – Vol. 7(6). – Pp. 1564–1583. – DOI: 10.1557/JMR.1992.1564.

19. King, R.B. Sliding Contact Stresses in A Two-Dimensional Layered Elastic Half-Space / R.B. King, T.C. Osullivan // International Journal of Solids and Structures. – 1987. – Vol. 23(5). – Pp. 581–597. – DOI: 10.1016/0020-7683(87)90019-9.

20. Tsui, T.Y. Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation: Part 1. Experimental Studies in an Aluminum Alloy / T.Y. Tsui, W.C. Oliver, G.M. Pharr // Journal of Materials Research. – 1996. – Vol. 11(3). – Pp. 752–759. - DOI: 10.1557/JMR.1996.0091.

21. Bolshakov, A. Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation: Part 2. Finite Element Simulations / A. Bolshakov, W.C. Oliver, G.M. Pharr // Journal of Materials Research. – 1996. – Vol. 11(3). – Pp. 760–768. – DOI: 10.1557/JMR.1996.0092.

22. Hainsworth, S.V. Analysis of nanoindentation load-displacement loading curves / S.V. Hainsworth, H.W. Chandler, T.F. Page // Journal of Materials Research. – 1996. – Vol. 11(8). – Pp. 1987–1995. - DOI: 10.1557/JMR.1996.0250.

23. Berriche, R. Vickers Hardness from Plastic Energy / R. Berriche // Scripta Metallurgica et Materialia. – 1995. – Vol. 32(4). – Pp. 617–620. – DOI: 10.1016/0956-716X(95)90847-D.

24. Li, X. D.; Bhushan, B. A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications / X.D. Li, B. Bhushan // Materials Characterization. – 2002. – Vol. 48(1). – Pp. 11–36. – DOI: 10.1016/S1044-5803(02)00192-4.

25. Hohlova, Yu. Indentirovanie ot makro- do nano- i primery issledovaniy svoystv materialov s osoboy strukturoy / Yu. Hohlova, M. Hohlov // Paton Electric Welding Institute of NAS of Ukraine. – 2016. - № 12. – DOI: 10.13140/RG.2.2.22072.96008.

26. Ignatovich, S.R. Opredelenie mikromehanicheskih harakteristik poverhnosti materialov s ispol'zovaniem nanoindentometra «Mikron-gamma» / S.R. Ignatovich, I.M. Zakiev, V.I. Zakiev // Vestnik Har'kovskogo nacional'nogo avtomobil'no-dorozhnogo universiteta. – 2008. – T. 42. - S. 86-89.

27. GOST R 8.748-2011. Gosudarstvennaya sistema obespecheniya edinstva izmereniy. Metally i splavy. Izmerenie tverdosti i drugih harakteristik materialov pri instrumental'nom indentirovanii. Chast' 1. Metod ispytaniy : data vvedeniya 2011.12.13. – Moskva : Standartinform, 2013. – 28 s.

28. Oliver, W.C. Mesurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology / W.C. Oliver, G.M. Pharr // Journal of Materials Research. – 2004. – Vol. 19, № 1. – DOI: 10.1557/jmr.2004.19.1.3.

29. Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentation / D.M. Jarzabek, M. Milczarek, S. Nosewicz [et al.] // Metallurgical and Materials Transactions A. – 2020. – Vol. 51. – Pp. 1625–1633. – DOI: 10.1007/s11661-020-05648-w.

30. Freund, L.B. Thin Film Materials: Stress, Defect Formation and Surface Evolution / L.B. Freund, S. Suresh // Cambridge University Press: Cambridge, 2003. – 820 p.

31. Ohring, M. Materials Science of Thin Films, Deposition and Structure / M. Ohring // Academic Press: San Diego, CA, 2002. – 808 p.

32. Nix, W.D. Mechanical-Properties of Thin-Films / W.D. Nix // Metallurgical Transactions A. – 1989. – Vol. 20(11). – Pp. 2217–2245. – DOI: 10.1007/BF02666659.

33. Jankowski, A.F. Effects of Deflection on Bulge Test Measurements of Enhanced Modulus in Multilayered Films / A.F. Jankowski, T. Tsakalakos // Thin Solid Films. – 1996. – Vol. 291. – Pp. 243–247. – DOI: 10.1016/S0040-6090(96)09031-1.

34. Small, M.K. Analysis of the Accuracy of the Bulge Test in Determining the Mechanical-Properties of Thin-Films / M.K. Small, W.D. Nix // Journal of Materials Research. – 1992. – Vol. 7 (6). – Pp. 1553–1563. - DOI: 10.1557/JMR.1992.1553.

35. Liechti, K. M. Large-Scale Yielding in Blister Specimens / K.M. Liechti, A. Shirani // International Journal of Fracture. – 1994. – Vol. 67 (1). – Pp. 21–36. - DOI: 10.1007/BF00032362.

36. Pressure and friction dependent mechanical strength – cracks and plastic flow / D.A. Wiegand, B. Redingius, K. Ellis, C. Leppard // International Journal of Solids and Structures. – 2011. – Vol. 48, I. 11–12. – Pp. 1617-1629. – DOI: 10.1016/j.ijsolstr.2011.01.025.

37. Gusev, E. Investigating Mechanical Strength of Multilayer Membranes for MEMS Converters of Physical Quantities / Gusev, E., Dedkova, A. Djuzhev // Nanoindustry Russia. – 2018. – № 1. – Pp. 538-541. – DOI: 10.22184/1993-8578.2018.82.538.541.

38. Jinling, Y. Fracture Properties of LPCVD Silicon Nitride and Thermally Grown Silicon Oxide Thin Films from the Load-Deflection of Long Si3N4 and SiO2/Si3N4 Diaphragms / Y. Jinling, G. João, P. Oliver // Journal of Microelectromechanical Systems. – 2008. – Vol. 17, I. 5. – Pp. 1120-1134. – DOI: 10.1109/JMEMS.2008.928706.

39. Venkatraman, R. Separation of film thickness and grain boundary strengthening effects in Al thin films on Si / R. Venkatraman, J.C. Bravman, // Journal of Materials Research. – 1992. - Vol. 7, I. 8. - Pp. 2040-2048. - DOI: 10.1557/JMR.1992.2040.

40. Experimental Determination of Mechanical Properties of the Anode Cell of an X-Ray Lithograph / N. Djuzhev, E. Gusev, A. Dedkova [et. al.] // Technical Physics. – 2020. – Vol. 65(11). – Pp. 1755-1759. – DOI: 10.1134/S1063784220110055.

41. Petersen, K.E. Youngs Modulus Measurements of Thin-Films Using Micromechanics / K.E. Petersen, C.R. Guarnieri // Journal of Applied Physics. – 1979. – Vol. 50 (11). – Pp. 6761–6766. – DOI: 10.1063/1.325870.

42. Osterberg, P. M. M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures / P.M. Osterberg, S.D. Senturia // Journal of Microelectromechanical Systems. – 1997. – Vol. 6 (2). – Pp. 107–118. - DOI: 10.1109/84.585788.

43. Mechanical Deflection of Cantilever Microbeams – A New Technique for Testing the Mechanical-Properties of Thin-Films / T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix // Journal of Materials Research. – 1988. – Vol. 3 (5). – Pp. 931–942. – DOI: 10.1557/JMR.1988.0931.

44. Mönig, R. Thermal Fatigue Testing of Thin Metal Films / R. Mönig, R.R. Keller, C.A. Volkert, // Review of Scientific Instruments. – 2004. – Vol. 75 (11). – Pp. 4997–5004. – DOI: 10.1063/1.1809260.

45. Microstructure Evolution During Alternating-Current-Induced Fatigue / R.R. Keller, R.H. Geiss, Y.-W. Cheng, D.T. Read // Proceedings of the International Mechanical Engineering Conference and Exposition 2004. - American Society of Mechanical Engineers, 2004. - Pp. 107–112.

46. Geiss, R.H. TEM Study of Dislocation Loops in Deformed Aluminium Films / R.H. Geiss, D.T. Read, R.R. Keller // Microscopy and Microanalysis. – 2005. – Vol. 11 (S02). – Pp. 1870–1871. – DOI: 10.1017/S1431927605508626.

47. Strain-Induced Grain Growth During Rapid Thermal Cycling of Aluminum Interconnects / R.R. Keller, R.H. Geiss, N. Barbosa [et al.] // Metallurgical and Materials Transactions A. – 2007. – Vol. 38 (13). – Pp. 2263– 2272. – DOI: 10.1007/s11661-006-9017-1.

48. The Effect of Ion Beam Etching on Mechanical Strength Multilayer Aluminum Membranes / E.E. Gusev, A.V. Borisova, A.A. Dedkova, A.A. Salnikov, V.Y. Kireev // 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). – 2019. – Pp. 1990-1994. – DOI: 10.1109/eiconrus.2019.8657243.

49. Vlasov, A.I. Analiz vliyaniya formy membrany na mehanicheskuyu prochnost' i stabil'nost' parametrov MEMS-sensorov davleniya / A.I. Vlasov, T.A. Civinskaya, V.A. Shahnov // Problemy razrabotki perspektivnyh mikro- i nanoelektronnyh sistem (MES). - 2016. - № 4. - S. 65-70.

50. Microscopis strength of silicon partiles in an aluminium-silicon alloy / M.G. Mueller, M. Fornabaio, G. Zagar, A. Mortensen // Acta Materialia. – 2016. – Vol. 105(15). – Pp. 165-175. – DOI: 10.1016/j.actamat.2015.12.006.

51. Clemens, B.M. Structure and Strength of Multilayers / B.M.Clemens, H. Kung, S.A. Barnett // MRS Bulletin. – 1999. – Vol. 24. – Pp. 20–26. – DOI: 10.1557/S0883769400051502.

52. Morris, M.A. The effect of geometrically necessary dislocations on grain refinement during severe plastic deformation and subsequent annealing of Al–7% Si / M.A. Morris, I. Gutierrez-Urrutia, D.G. Morris, // Materials Science and Engineering A. – 2008. – Vol. 493. – Pp. 141–147. – DOI: 10.1016/j.msea.2007.07.096.

Login or Create
* Forgot password?