employee from 01.01.2018 until now
St. Petersburg State University (Institute of Earth Sciences, Junior Scientist)
employee from 01.01.2019 until now
Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg State University
Saint Petersburg, St. Petersburg, Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
VAC 1.6.18 Науки об атмосфере и климате
UDK 551.5 Метеорология. Климатология
GRNTI 37.21 Метеорология
GRNTI 37.23 Климатология
GRNTI 37.25 Океанология
GRNTI 37.01 Общие вопросы геофизики
GRNTI 37.15 Геомагнетизм и высокие слои атмосферы
GRNTI 37.31 Физика Земли
GRNTI 38.01 Общие вопросы геологии
OKSO 05.02.03 Метеорология
OKSO 05.06.01 Науки о Земле
TBK 6326 Физика атмосферы
TBK 6325 Гидрофизика. Гидрология
The causes of Arctic amplification are widely debated, and a cohesive picture has not been obtained yet. This study has investigated the role of the Atlantic meridional oceanic and atmospheric heat transport into the Arctic in the emergence of Arctic amplification. The integral advective fluxes in the layer of Atlantic waters and in the lower troposphere were considered. The results show a strong coupling between the meridional heat fluxes and regional Arctic amplification in the Eurasian Arctic on the decadal time scales (10–15 years). We argue that the low-frequency variability of Arctic amplification is regulated via the chain of oceanic heat transport — atmospheric heat transport — Arctic amplification. The atmospheric response to the ocean influence occurs with a delay of three years and is attributed to the Bjerknes compensation mechanism. In turn, the atmospheric heat and moisture transport directly affects the magnitude of Arctic amplification, with the latter lagging by one year. Thus, the variability of oceanic heat transport at the southern boundary of the Nordic Seas might be a predictor of the Arctic amplification magnitude over the Eurasian Basin of the Arctic Ocean with a lead time of four years. The results are consistent with the concept of the decadal Arctic climate variability expressed via the Arctic Ocean Oscillation index.
Oceanic heat transport, Atmospheric heat transport, Decadal variability, Arctic climate, Coupling, Eurasian Basin
1. Aagaard, K., L. K. Coachman, E. Carmack (1981), On the halocline of the Arctic Ocean, Deep Sea Res. Part A Oceanogr. Res. Papers, 28, 529–545, https://doi.org/10.1016/0198-0149(81)90115-1
2. Alekseev, G., S. Kuzmina, L. Bobylev, A. Urazgildeeva, N. Gnatiuk (2019), Impact of atmospheric heat and moisture transport on the Arctic warming, Int. J. Climatol., 39, 3582–3592, https://doi.org/10.1002/joc.6040
3. Allen, M. R., O. P. Dube, W. Solecki, F. Aragon-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta et al. (2018), Framing and Context, in: Masson-Delmotte, V., P. Zhai, H.-O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, et al. (Eds.), Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, p. 49–91, IPCC, Geneva, Switzerland.
4. Arrhenius, S. (1896), On the influence of carbonic acid in the air upon the temperature of the ground, Lond. Edinb. Dubl. Phil. Mag., 41, 237–276.
5. Baggett, C., S. Lee, S. Feldstein (2016), An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming, J. Atmos. Sci., 73, 4329–4347, https://doi.org/10.1175/JAS-D-16-0033.1
6. Balmaseda, M. A., K. Mogensen, A. T. Weaver (2013), Evaluation of the ECMWF ocean reanalysis system ORAS4, Q. J. R. Meteorol. Soc., 139, 1132–1161, https://doi.org/10.1002/qj.2063
7. Bashmachnikov, I. L., A. M. Fedorov, P. A. Golubkin, A. V. Vesman, V. V. Selyuzhenok, N. V. Gnatiuk, L. P. Bobylev, K. I. Hodges, D. S. Dukhovskoy (2021), Mechanisms of interannual variability of deep convection in the Greenland sea, Deep Sea Res. Part I Oceanogr. Res. Pap., 174, 103557, https://doi.org/10.1016/j.dsr.2021.103557
8. Bekryaev, R. V. (2019), Interrelationships of the North Atlantic multidecadal climate variability characteristics, Russ. J. Earth Sci., 19, ES3004, https://doi.org/10.2205/2018ES000653
9. Bjerknes, J. (1964), Atlantic air-sea interaction, Adv. Geophys., 10, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9
10. Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Brethertone, J.-L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis, M. J. Webb (2006), How well do we understand and evaluate climate change feedback processes?, J. Clim., 19, 3445–3482. https://doi.org/10.1175/JCLI3819.1
11. Davy, R., L. Chen, E. Hanna (2018), Arctic amplification metrics, Int. J. Climatol., 38, 4384–4394. https://doi.org/10.1002/joc.5675
12. Dessler, A. E., Z. Zhang, P. Yang (2008), Water-vapor climate feedback inferred from climate fluctuations, 2003–2008, Geophys. Res. Lett., 35, L20704. https://doi.org/10.1029/2008GL035333
13. Dukhovskoy, D. S., I. Yashayaev, A. Proshutinsky, J. L. Bamber, I. L. Bashmachnikov, E. P. Chassignet, C. M. Lee, A. J. Tedstone (2019), Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic, J. Geophys. Res.: Oceans, 124, 3333–3360, https://doi.org/10.1029/2018JC014686
14. England, M. R., I. Eisenman, N. J. Lutsko, T. J. W. Wagner (2021), The recent emergence of Arctic Amplification, Geophys. Res. Lett., 48, e2021GL094086, https://doi.org/10.1029/2021GL094086
15. Fedorov, A. M., R. P. Raj, T. V. Belonenko, E. V. Novoselova, I. L. Bashmachnikov, J. A. Johannessen, L. H. Pettersson (2021), Extreme convective events in the Lofoten Basin, Pure Appl. Geophys., 178, 2379–2391, https://doi.org/10.1007/s00024-021-02749-4
16. Francis, J. A., S. J. Vavrus (2015), Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005
17. Goosse, H., J. E. Kay, K. C. Armour, A. Bodas-Salcedo, H. Chepfer, D. Docquier, A. Jonko, P. J. Kushner, O. Lecomte, F. Massonnet, H.-S. Park, F. Pithan, G. Svensson, M. Vancoppenolle (2018), Quantifying climate feedbacks in polar regions, Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0
18. Gordeeva, S. M., T. V. Belonenko, L. E. Morozova (2022), Key to the Atlantic Gates of the Arctic, Russ. J. Earth Sci., 22, ES2004, https://doi.org/10.2205/2022ES000792
19. Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson, M. Nicolaus, M. A. Granskog (2017), Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, 6974–6983, https://doi.org/10.1002/2017GL073395
20. Graversen, R. G., M. Burtu (2016), Arctic amplification enhanced by latent energy transport of atmospheric planetary waves, Q. J. R. Meteorol. Soc., 142, 2046–2054, https://doi.org/10.1002/qj.2802
21. Graversen, R. G., P. L. Langen, T. Mauritsen (2014), Polar amplification in CCSM4: contributions from the lapse rate and surface albedo feedbacks, J. Clim., 27, 4433–4450, https://doi.org/10.1175/JCLI-D-13-00551.1
22. Greene, C. A., K. Thirumalai, K. A. Kearney, J. M. Delgado, W. Schwanghart, N. S. Wolfenbarger, K. M. Thyng, D. E. Gwyther, A. S. Gardner, D. D. Blankenship (2019), The climate data toolbox for MATLAB, Geochem. Geophys., 20, 3774–3781, https://doi.org/10.1029/2019GC008392
23. Grinsted, A. (2014) A cross wavelet and wavelet coherence toolbox for MATLAB. GitHub. https://github.com/grinsted/wavelet-coherence. Accessed 16 November 2020.
24. Grinsted, A., J. C. Moore, S. Jevrejeva (2004), Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Process. Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004
25. Henry, M., T. M. Merlis (2019), The role of the nonlinearity of the Stefan-Boltzmann law on the structure of radiatively forced temperature change, J. Clim., 32, 335–348, https://doi.org/10.1175/JCLI-D-17-0603.1
26. Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J. N. Thépaut (2020), The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803
27. Hwang, J., Y.-S. Choi, W. Kim, H. Su, J. H. Jiang (2018), Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes, Clim. Dyn., 50, 615–628, https://doi.org/10.1007/s00382-017-3629-6
28. Ivanov, V., V. Alexeev, N. V. Koldunov, I. Repina, A. B. Sandø, L. H. Smedsrud, A. Smirnov (2016), Arctic Ocean heat impact on regional ice decay: A suggested positive feedback, J. Phys. Oceanogr., 46, 1437–1456, https://doi.org/10.1175/JPO-D-15-0144.1
29. Johannessen, O. M., S. I. Kuzmina, L. P. Bobylev, M. W. Miles (2016), Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalization, Tellus A: Dyn. Meteorol. Oceanogr., 68, 28234, https://doi.org/10.3402/tellusa.v68.28234
30. Jungclaus, J. H., T. Koenigk (2010), Low-frequency variability of the arctic climate: the role of oceanic and atmospheric heat transport variations, Clim. Dyn., 34, 265–279, https://doi.org/10.1007/s00382-009-0569-9
31. Latonin, M. M., I. L. Bashmachnikov, L. P. Bobylev (2020a), The Arctic amplification phenomenon and its driving mechanisms, Fundam. Prikl. Gidrofiz., 13, 3–19, https://doi.org/10.7868/S2073667320030016
32. Latonin, M. M., I. L. Bashmachnikov, L. P. Bobylev, R. Davy (2021), Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming, Polar Sci., 30, 100677, https://doi.org/10.1016/j.polar.2021.100677
33. Latonin, M. M., V. A. Lobanov, I. L. Bashmachnikov (2020b), Discontinuities in wintertime warming in Northern Europe during 1951–2016, Climate, 8, 80, https://doi.org/10.3390/cli8060080
34. Lee, H. J., M. O. Kwon, S.-W. Yeh, Y.-O. Kwon, W. Park, J.-H. Park, Y. H. Kim, M. A. Alexander (2017), Impact of poleward moisture transport from the North Pacific on the acceleration of sea ice loss in the Arctic since 2002, J. Clim., 30, 6757–6769, https://doi.org/10.1175/JCLI-D-16-0461.1
35. Malmberg, S.-A., S. Jonsson (1997), Timing of deep convection in the Greenland and Iceland Seas, ICES J. Mar. Sci., 54, 300–309, https://doi.org/10.1006/jmsc.1997.0221
36. Morgan, P. P. (1994), SEAWATER: a library of MATLAB computational routines for the properties of sea water, version 1.2, 37 pp., CSIRO Marine Laboratories, Hobart, Australia.
37. Nummelin, A., C. Li, P. J. Hezel (2017), Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean, Geophys. Res. Lett., 44, 1899–1908, https://doi.org/10.1002/2016GL071333
38. Pithan, F., T. Mauritsen (2014), Arctic amplification dominated by temperature feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184, https://doi.org/10.1038/ngeo2071
39. Polyakov, I. V., A. V. Pnyushkov, M. B. Alkire, I. M. Ashik, T. M. Baumann, E. C. Carmack, I. Goszczko, J. Guthrie, V. V. Ivanov, T. Kanzow, R. Krishfield, R. Kwok, A. Sundfjord, J. Morison, R. Rember, A. Yulin (2017), Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean, Science, 356, 285–291, https://doi.org/10.1126/science.aai8204
40. Previdi, M., K. L. Smith, L. M. Polvani (2021), Arctic amplification of climate change: a review of underlying mechanisms, Environ. Res. Lett., 16, 093003, https://doi.org/10.1088/1748-9326/ac1c29
41. Proshutinsky, A., R. H. Bourke, F. A. McLaughlin (2002), The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales, Geophys. Res. Lett., 29, 15-1-15-4, https://doi.org/10.1029/2002GL015847
42. Proshutinsky, A., D. Dukhovskoy, M.-L. Timmermans, R. Krishfield, J. L. Bamber (2015), Arctic circulation regimes, Phil. Trans. R. Soc. A, 373, 20140160, https://doi.org/10.1098/rsta.2014.0160
43. Proshutinsky, A., M. Johnson (1997), Two circulation regimes of the wind-driven Arctic Ocean, J. Geophys. Res., 102, 12493–12514, https://doi.org/10.1029/97JC00738
44. Reid, P. C., R. E. Hari, G. Beaugrand, D. M. Livingstone, C. Marty, D. Straile, J. Barichivich, E. Goberville, R. Adrian, Y. Aono, R. Brown, J. Foster, P. Groisman, P. Hélaouët, H.-H. Hsu, R. Kirby, J. Knight, A. Kraberg, J. Li, T.-T. Lo, R. B. Myneni, R. P. North, A. J. Pounds, T. Sparks, R. Stübi, Y. Tian, K. H. Wiltshire, D. Xiao, Z. Zhu (2016), Global impacts of the 1980s regime shift, Glob. Chang. Biol., 22, 682–703, https://doi.org/10.1111/gcb.13106
45. Rudels, B. (2015), Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009, Prog. Oceanogr., 132, 22–67, https://doi.org/10.1016/j.pocean.2013.11.006
46. Schauer, U., H. Loeng, B. Rudels, V. K. Ozhigin, W. Dieck (2002), Atlantic Water flow through the Barents and Kara Seas, Deep-Sea Res. I: Oceanogr. Res. Pap., 49, 2281–2298, https://doi.org/10.1016/S0967-0637(02)00125-5
47. Screen, J. A., I. Simmonds (2010), The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334–1337, https://doi.org/10.1038/nature09051
48. Serreze, M. C., R. G. Barry (2011), Processes and impacts of Arctic amplification: A research synthesis, Glob. Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004
49. Serreze, M. C, J. A. Francis (2006), The Arctic amplification debate, Clim. Change, 76, 241–264, https://doi.org/10.1007/s10584-005-9017-y
50. Shaffrey, L. C., R. T. Sutton (2004), The interannual variability of energy transports within and over the Atlantic Ocean in a coupled climate model, J. Clim., 17, 1433–1448, https://doi.org/10.1175/1520-0442(2004)017<1433:TIVOET>2.0.CO;2
51. Shaffrey, L. C., R. T. Sutton (2006), Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model, J. Clim., 19, 1167–1181, https://doi.org/10.1175/JCLI3652.1
52. Sippel, S., E. M. Fischer, S. C. Scherrer, N. Meinshausen, R. Knutti (2020), Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming, Environ. Res. Lett., 15, 094056, https://doi.org/10.1088/1748-9326/ab86f2
53. Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. Nilsen, Ø. Skagseth (2010), Heat in the Barents Sea: Transport, storage, and surface fluxes, Ocean Sci., 6, 219–234, https://doi.org/10.5194/os-6-219-2010
54. Steele, M., J. H. Morison, T. B. Curtin (1995), Halocline formation in the Barents Sea, J. Geophys. Res., 100, 881–894, https://doi.org/10.1029/94JC02310
55. Torrence, C., G. P. Compo (1998), A practical guide to wavelet analysis, Bull. Amer. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
56. van der Swaluw, E., S. Drijfhout, W. Hazeleger (2007), Bjerknes compensation at high northern latitudes: the ocean forcing the atmosphere, J. Clim., 20, 6023–6032, https://doi.org/10.1175/2007JCLI1562.1
57. Vesman, A. V., I. L. Bashmachnikov, P. A. Golubkin, R. P. Raj (2020), The coherence of the oceanic heat transport through the Nordic seas: oceanic heat budget and interannual variability, Ocean Sci. Discuss. [preprint], https://doi.org/10.5194/os-2020-109
58. Volodin, E. M., V. Ya. Galin, N. A. Diansky, V. P. Dymnikov, V. N. Lykossov (2008), Mathematical modeling of potential catastrophic climate changes, Russ. J. Earth Sci., 10, ES2004, https://doi.org/10.2205/2007ES000231
59. Wilks, D. S. (2006), Statistical methods in the atmospheric sciences, second ed., 91, 649 pp., International Geophysics Series, San Diego, CA, USA.
60. Woods, C., R. Caballero (2016), The role of moist intrusions in winter Arctic warming and sea ice decline, J. Clim., 29, 4473–4485, https://doi.org/10.1175/JCLI-D-15-0773.1
61. Yang, H., Y. Zhao, Z. Liu, Q. Li, F. He, Q. Zhang (2015), Heat transport compensation in atmosphere and ocean over the past 22,000 years, Sci. Rep., 5, 16661, https://doi.org/10.1038/srep16661
62. Zelinka, M. D., D. L. Hartmann (2012), Climate feedbacks and their implications for poleward energy flux changes in a warming climate, J. Clim., 25, 608–624, https://doi.org/10.1175/JCLI-D-11-00096.1