OCCUPATIONAL EXPOSURE TO NEUTRONS AT THE BELOYARSK NPP
Abstract and keywords
Abstract (English):
Studies of the energy distribution of neutron radiation at the workplaces of the Beloyarsk NPP were carried out. At 1 and 2 power units, occupational exposure of neutron irradiation occurs during operations for loading spent nuclear fuel into special railway carriage. At power units 3 and 4, operations accompanied by neutron irradiation can be divided into 3 groups: (1) work in rooms adjacent to the reactor core; (2) manipulation of radioisotope neutron sources; (3) work with fresh and spent nuclear fuel. Based on the data obtained on the energy distribution of the neutron radiation flux density, the ‘true’ values of the ambient dose equivalent rate H*(10), the individual dose equivalent rate Hp(10) and the integral neutron radiation flux density at individual workplaces were determined. For each group of workplaces, Fluence-toambient dose equivalent conversion coefficients are determined, which lie in the range from 12 to 295 pSv⋅cm2. Correction factors for individual thermoluminescent dosimeters, taking into.

Keywords:
neutron radiation, occupational exposure, spectra
References

1. Compendium of neutron spectra and detector responses for radiation protection purposes: supplement to technical reports series no. 403. Vienna: International Atomic Energy Agency, 2001.

2. Pyshkina M.D., Nikitenko V.O., Zhukovskiy M.V. i dr. Neopredelennost' rezul'tatov izmereniy individual'nyh dozimetrov neytronnogo izlucheniya na rabochih mestah//ANRI. 2018. N 4(95). 2018. C. 15-23.

3. T. Bolognese-Milsztajn, D. Bartlett, M. Boschung, M. Coeck, G. Curzio, F. d’Errico, A. Fiechtner, V. Giusti, V. Gressier, J. Kyllönen, V. Lacoste, L. Lindborg, M. Luszik-Bhadra, C. Molinos, G. Pelcot, M. Reginatto, H. Schuhmacher, R. Tanner, F. Vanhavere, D. Derdau, «Individual neutron monitoring in workplaces with mixed neutron/photon radiation», Radiation Protection Dosimetry, vol. 110, Issue 1-4, pp. 753–758. URL: https://doi.org/10.1093/rpd/nch220 (data obrascheniya: 15.02.2021).

4. F. d’Errico, D. Bartlett, T. Bolognese-Milsztajn, M. Boschung, M. Coeck, G. Curzio, A. Fiechtner, J.‑E. Kyllönen, V. Lacoste, L. Lindborg, M. Luszik-Bhadra, M. Reginatto, H. Schuhmacher, R. Tanner, F. Vanhavere, «Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part I: scope and methods of the project», Radiation Protection Dosimetry, vol. 125, Issue 1-4, pp. 275-280. URL: https://doi.org/10.1093/rpd/ncm169 (data obrascheniya: 15.02.2021).

5. H. Schuhmacher, D. Bartlett, T. Bolognese-Milsztajn, M. Boschung, M. Coeck, G. Curzio, F. d’Errico, A. Fiechtner, J.-E. Kyllönen, V. Lacoste, L. Lindborg, M. Luszik-Bhadra, M. Reginatto, R. Tanner, F. Vanhavere, «Evaluation of individual dosimetry in mixed neutron and photon radiation fields (EVIDOS). Part II: conclusions and recommendations», Radiation Protection Dosimetry, vol. 125, Issue 1-4, pp. 281-284. URL: https://doi.org/10.1093/rpd/ncm167 (data obrascheniya: 15.02.2021).

6. M. Luszik-Bhadra, T. Bolognese-Milsztajn, M. Boschung, M. Coeck, G. Curzio, F. d’Errico, A. Fiechtner, V. Lacoste, L. Lindborg, M. Reginatto, H. Schuhmacher, R. Tanner, F. Vanhavere, «Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields», Radiation Protection Dosimetry, vol. 125, Issue 1-4, pp. 364-368. URL: https://doi.org/10.1093/rpd/ncm189 (data obrascheniya: 15.02.2021).

7. M. Luszik-Bhadra, V. Lacoste, M. Reginatto, A. Zimbal, «Energy and direction distribution of neutrons in workplace fields: implication of the results from the EVIDOS project for the set‑up of simulated workplace fields», Radiation Protection Dosimetry, vol. 126, Issue 1-4, pp. 151-154. URL: https://doi.org/10.1093/rpd/ncm032 (data obrascheniya: 15.02.2021).

8. Hyeonseo Park, Jungho Kim & Kil-Oung Choi, «Neutron Spectrum Measurement at the Workplace of Nuclear Power Plant with Bonner Sphere Spectrometer», Journal of Nuclear Science and Technology, 45:sup5, pp. 298-301.

9. AT1117M Radiation Monitor (Neutron Dosimeter). URL: https://atomtex.com/sites/default/files/datasheets/at1117m_neutron_dosimeter_bdkn-03_1.pdf (data obrascheniya 15.02.2021).

10. Thermo Scientific Harshaw TLD Materials and Dosimeters. URL: https://assets.thermofisher.com/TFS-Assets/LSG/Catalogs/Dosimetry-Materials-Brochure.pdf (data obrascheniya 15.02.2021).

11. DMC 2000 GN Personal Electronic Dosimeter. URL: https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/dmc-2000-gn-neutron-dosimeter.pdf?1523762742 (data obrascheniya 15.02.2021).

12. AT1117M Radiation Monitor. URL: https://atomtex.com/sites/default/files/datasheets/at1117m_all_options_0.pdf (data obrascheniya 15.02.2021).

13. M. Pyshkina, A. Vasilyev, A. Ekidin, M. Zhukovsky, «Development and testing of a neutron radiation spectrometer in fields of radionuclide sources: AIP Conference Proceeding».

14. R. Bedogni, C. Domingo, A. Esposito, F. Fernández, «FRUIT: An operational tool for multisphere neutron spectrometry in workplaces», Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, no. 580, pp. 1301-1309. 10.1016/j.nima.2007.07.033.

Login or Create
* Forgot password?