, Russian Federation
employee from 01.01.2010 to 01.01.2020
Kazan, Kazan, Russian Federation
Jerusalem, Israel
, Russian Federation
from 01.01.2019 to 01.01.2020
Kazan, Kazan, Russian Federation
Samara, Russian Federation
UDK 61 Медицина. Охрана здоровья
GRNTI 76.29 Клиническая медицина
OKSO 31.06.2001 Клиническая медицина
BBK 566 Стоматология
BISAC MED016080 Dentistry / Dental Implants
Aim. Study by the method of electronic paramagnetic resonance (EPR) physical- chemical and structural features of bone tissue and their effect on the processes of osseointegration during dental implantation using implants with different macro-microstructure of the surface. Material and methods. The experimental study was conducted on 7 Vietnamese visobryu-pig mini-pigs. Under anesthesia, implants with different macro-microstructures of the surface (SLA, RBM, ) were installed under the methods of direct and delayed implantation. At different dates of the experiment, after the appropriate anesthesia, the gentle method was to remove implants with small fragments of periemplant bone tissue. Macro-drugs of bone tissue of the jaws after sawing on blocks and extraction of implants, as well as appropriate preparation, were investigated by the method of stationary electronic paramagnetic resonance. Results. As a result of the study it was revealed that the insertation of the implant into the jaw bone leads to structural changes in the surrounding bone implant. After prior exposure, the EPR spectrums, caused by different types of paramagnetic centers, were observed in the samples studied. Two types of centers, , have been identified. and F is the center. The spectrum of the second type reflects the presence in hydroxiapatites of lattice defects associated with isomorphism, and, . The findings suggest that one of the reasons for the higher content of free radicals (SR) in bone tissue derived from radiation, after dental implantation is the weakening of chemical bonds, greater mobility of fragments that make up its structure. It must be assumed that the high content of SR in the bone in the postoperative period is nothing but a result of the disruption of the mineralization process, which is accompanied by the replacement of phosphate groups with carbonate ions that are free-radicalized. It has also been revealed that the structural integrity of the bone depends to a large extent on the degree of orderliness of microcrystals of hydroxyapatite. According to EPR, the most favorable bone recovery (the process of osseointegration) occurs when using implants with a surface, . Conclusions. EPR research of native and carbonate radicals is a unique tool for studying the physical and chemical and structural features of bone tissue and their role in the process of osseointegration of implants. The speed of osseointegration for implants with different microstructures of the surface varies. EPR can be used as an additional method to control the integration of implants into bone tissue.
electronic paramagnetic resonance, implants, free radicals, osseointegration, bone tissue, apatite, carbonate groups, immediate implantation , dentistry, clinical study
1. Pavlenko A. B., Gorban' S. A., Ilyk R. R., Shterenberg B. Poverhnost' implantata, ee rol' i znachenie v osteointegracii. Sovremennaya stomatologiya. 2009; 4:101-108. [A.B. Pavlenko, S.A. Gorban, R.R. Ilyk, B. Shterenberg. The surface of the implant, its role and significance in osseointegration. Modern dentistry. 2009; 4:101-108. (In Russ.)].
2. Maruhno B. B., Vahnenko A. I. Izuchenie poverhnosti implantatov razlichnyh sistem. Sovremennaya stomatologiya. 2012; 4:106-109. [B.B. Marukhno, A.I. Vakhnenko. Study of the surface of implants of various systems. Modern dentistry. 2012; 4:106-109. (In Russ.)].
3. Vinnikov L. I., Savranskiy F. Z., Simahov R. V., Grishin P. O. Sravnitel'naya ocenka poverhnostey implantatov, obrabotannyh tehnologiyami SLA, RBM Clean & Porous. Sovremennaya stomatologiya. 2015; 2: 104-108. [L.I. Vinnikov, F.Z. Savransky, R.V. Simakhov, P.O. Grishin. Comparative evaluation of implant surfaces treated with SLA, RBM Clean & Porous technologies. Modern dentistry. 2015; 2: 104-108. (In Russ.)].
4. Savransky Ph.Z., Simachov R.V., Sulimov A.F., Grishin P.O. The dynamics of technological improvements of the surface advanced SLA and RBM implants. Innovation solutions in the manufacturing of Humana Dental GmbH implants // East European Journal. – 2016;1 (5):104-110.
5. Rupp F., Liang L., Geis-Gerstorfer J., Sahiderlr I., Huttih F. Surface characteristics of dental implants. A review // Dent Meter. – 2018;34:40-57.
6. Cheng B., Niu Q., Cui Y., Jiang W. et al. Effects of different hierarchical hybrid micro/nanostructure surface on implants osseointegration // Clin Implant Dent Res. – 2017;19:539-595.
7. Brik F. B. Dubok V. A. Rozenfel'd L. G. i dr. Primenenie EPR dlya izucheniya processov assimilyacii implantatov zhivoy kostnoy tkan'yu. Aktual'nye problemy sovremennoy mediciny. Vestnik ukrainskoy stomatologicheskoy akademii. 2007; 7 (1-2):262-266. [F.B. Brick, V.A. Dubok, L.G. Rosenfeld et al. The use of EPR to study the processes of assimilation of implants by living bone tissue. Actual problems of modern medicine. Bulletin of the Ukrainian Dental Academy. 2007; 7 (1-2):262-266. (In Russ.)].
8. Wang Lai Hui., Vittoria Perrotti, Elavia Laculli, Adriano Plattelli, Alessandro Quaranto. The emerging role of cold atmospheric plasma in implantology: a review of the literature // J Nanomaterials. – 2020;10 (8):1505-1016.
9. Gabriele Cervino, Luca Fiorillo. Meteials Sandblastid and acide etched titanium dental implants surface. Systematic review and confocal microscopy evaluation // Materials. – 2019;12 (11):1-20.
10. Bazaka K., Jacob M. V., Ostricov K. K. Sustainable life cycles of natural-precursor-derived nanocarbons // Chem Rev. – 2016;116:163-214.
11. Shan F.A., Thomsen P., Palmquist A.L. Review of the impact of implants/ Biomaterials on osteocytes // Dent Res. – 2018;97:977-988.
12. Salerno M., Itri A., Rebaudi A. A surface microstructure of dental implants befor and after insertion: An in vitro study by means scanning probe microscopy // Implant Dent. – 2015;24:248-255.
13. Coelho P.G., Takayma T., Yoo D., Jimbo R. et al. nanometer-scale features on micrometer-scale surface texturing: a bone histological, gene expression and nanomechanical study // Bone. – 2014;65:25-32.
14. Kim S., Park C., Moon B., Kim H. E., Jang T. S. Enhancement of osseointegration by direct coating of rh BMR-2 on target-ion induced plasma sputtering treated SLA surface for dental for dental application // Biomater. – 2017;31:807-818.
15. Gilinskaya L. G., Okuneva G. N., Vlasov Yu. A. Issledovanie mineral'nyh patogennyh obrazovaniy na serdechnyh klapanah cheloveka EPR spektroskopiya. Zhurnal strukturnoy himii. 2003; 44; 5:678-882. [L.G. Gilinskaya, G.N. Okuneva, Yu.A. Vlasov. Study of mineral pathogenic formations on human heart valves EPR spectroscopy. Journal of Structural Chemistry. 2003; 44; 5:678-882. (In Russ.)].
16. Macary C., Menhall A., Zammarie C., Lombardi T. et al. Primary stability optimization by using fixtures with different thread depth loading implants // Materials (Basel). – 2019; 27; 12 (15):398-411.
17. Jinno Y., Jimbo R., Tovar N., Taixeira H. S., et al. In vivo evaluation of dual acid-etched implants with identical microgeometry in high-density bone // Implants Dent. – 2017;26:815-819.
18. Ritte I.D., Dorogoy A., Shemtov-Yona K. Modeling the effect of osseointegration on dental implants pullout and torque removal tests // Clinical Implant Dentistry and Relate Research. – 2018;86 (2051):713-720.
19. Gaetano Marenzi, Glanrico Spagnuolo, Jone Amilla Sammartino et al. Micro-scale surface patterning of titanium dental implants by anodization in the presence of modifying salts // Materials (Basel). – 2019;12 (11):1753-1764.
20. Mello C.C., Lemos S.A., Verri F.R., Dos Santos D.M. et al. Immediate implant placement into fresh extraction sockets versus delayed implants into healed sockets: a systematic review and meta — analysis // Int J Oral Maxillofac Surg. – 2017;26 (9):1162-1177.
21. Pigozo M.N., Rebelo da Costa T., Sesma N., Lagana D.C. Immediate versus early loading of single dental implants: a systematic review and analisis // J Prosthet Dent. – 2018;120 (1):25-34.
22. Bunev F. A., Muraev A. A., Gazhva Yu. V., Muhametshin R. V. i dr. Rezul'taty neposredstvennoy dental'noy implantacii s nemedlennoy nagruzkoy i obosnovanie protokola matematicheskogo modelirovaniya. Zhurnal nauchnyh statey. Zdorov'e i obrazovanie v HHI veke. 2018; 20; 9:62-69. [F.A. Bunev, A.A. Muraev, Yu.V. Gazhva, R.V. Mukhametshin et al. Results of direct dental implantation with immediate loading and substantiation of the mathematical modeling protocol. Journal of scientific articles. Health and education in the XXI century. 2018; 20; 9:62-69. (In Russ.)].
23. Panahov N. A. O., Mahmudov T. G. O. Uroven' stabil'nosti zubnyh implantatov v razlichnye sroki funkcionirovaniya. Problemy stomatologii. 2018; 14; 1:89-93. [N.A.O. Panahov, T.G.O. Makhmudov. The level of stability of dental implants at different periods of operation. Actual problems in dentistry. 2018; 14; 1:89-93. (In Russ.)]. https://www.elibrary.ru/item.asp?id=32840697
24. Sysolyatin P. G., Gyunter V. E., Zheleznyy P. A., Zheleznyy S. P. Osteointegraciya razlichnyh implantatov pri peresadke kostnogo autotranpplantata v defekt nizhney chelyusti v eksperimente. Problemy stomatologii. 2006; 5-6:34-36. [P.G. Sysolyatin, V.E. Gunther, P.A. Zhelezny, S.P. Zhelezny. Osseointegration of various implants during transplantation of a bone autograft into a defect in the lower jaw in the experiment. Actual problems in dentistry. 2006; 5-6:34-36. (In Russ.)]. https://www.elibrary.ru/item.asp?id=32814578
25. Astashina N.B., Plyuhin D.V., Delec A.V. Prognozirovanie ishodov dental'noy implantacii na osnove izucheniya urovnya produktov okislitel'noy modifikacii belkov slyuny. Problemy stomatologii. 2017; 13; 3:47-52. [N.B. Astashina, D.V. Plyukhin, A.V. Delets. Predicting the outcomes of dental implantation based on studying the level of products of oxidative modification of saliva proteins. Actual problems in dentistry. 2017; 13; 3:47-52. (In Russ.)]. https://www.elibrary.ru/item.asp?id=30109820