employee
Rostov na Donu, Rostov-on-Don, Russian Federation
graduate student
Rostov na Donu, Rostov-on-Don, Russian Federation
student
Rostov na Donu, Rostov-on-Don, Russian Federation
employee
Rostov-na-Donu, Rostov-on-Don, Russian Federation
The article presents the derivation of the FEM equations, which make possible to calculate short concrete-filled steel tubular columns in a plane elastic formulation. Steel tube is modeled by 1D bar finite elements. The obtained results are compared with the results of calculations using 3D solid and shell finite elements.
FEM, eccentric compression, numerical methods, CFST columns, concrete
1. Grigoryan M.N., Urvachev P.M., Chepurnenko A.S., Polyakova T.V. Determination of the ultimate load for centrally compressed concrete filled steel tubular columns based on the deformation theory of plasticity // IOP Conference Series: Materials Science and Engineering, 2020, Vol. 913. DOI 10.1088/1757-899X/913/2/022069.
2. Krishan A.L, Melnichyuk A.S. Prochnost' trubobetonnykh kolonn kvadratnogo secheniya pri osevom szhatii [Strength of square-section tubular concrete columns under axial compression] // Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova, 2012, No. 3, pp. 51-54 (in Russian).
3. Reddy J.N. Energy principles and variational methods in applied mechanics. 2nd Edition. New York, John Wiley, 2002, 608 pages.
4. Samul V.I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaya shkola, 1982, 264 pages (in Russian).
5. Segerlind L.J. Applied finite element analysis. New York, John Wiley, 1976, 422 pages.
6. Mailyan L.R., Chepurnenko A.S., Ivanov A. Calculation of prestressed concrete cylinder considering creep of concrete// Procedia Engineering, 2016, Vol. 165, pp. 1853-1857. DOI 10.1016/j.proeng.2016.11.933.
7. Yazyev B.M., Chepurnenko A.S., Litvinov S.V., Kozel'skaya M.Yu. Napryazhenno-deformirovannoe sostoyanie predvaritel'no napryazhennogo zhelezobetonnogo tsilindra s uchetom polzuchesti betona [Stress-strain state of a prestressed reinforced concrete cylinder with the consideration of concrete creep] // Nauchnoe obozrenie, 2014, No. 11, part 3, pp. 759–763 (in Russian).
8. Yukhnov I.V., Yazyev B.M., Chepurnenko A.S., Litvinov S.V. Napryazhenno–deformirovannoe sostoyanie korotkogo vnetsentrenno szhatogo zhelezobetonnogo sterzhnya pri nelineynoy polzuchesti [Stress-strain state of a short eccentrically compressed reinforced concrete rod with nonlinear creep] // Nauchnoe obozrenie, 2014, No. 8, pp. 929–934 (in Russian).
9. Chepurnenko A.S., Chepurnenko V.S., Savchenko A.A. Konechno-elementnoe modelirovanie polzuchesti trekhsloynoy plastiny [Finite element modeling of a three-layer plate creep] // Molodoy issledovatel' Dona, 2017, No 3 (in Russian). URL: http://mid-journal.ru/upload/iblock/508/95_102.pdf.
10. Andreev V.I., Yazyev B.M., Chepurnenko A.S., Litvinov S. V. Raschet trekhsloynoy pologoy obolochki s uchetom polzuchesti srednego sloya [Calculation of a three-layer shallow shell taking into account the creep of the middle layer] // Vestnik MGSU, 2015, No. 7, pp. 17–24 (in Russian).