, Russian Federation
In this paper is formulated the relevance of computer tools creation for verification of descriptive geometry task solutions. Are analyzed the shortcomings of available methods and systems for such verification. A new verification method is proposed – the mode of superposition based on overlaying a student’s solution with a template and formal evaluation the overlaying results. To create templates for a wide range of descriptive geometry tasks, it is proposed to use a formal grammar of the correct solution, which is constructed using special nonterminal symbols – “and”, “or”, “transform” and “instance”. As the grammar’s terminal symbols are used geometric figures. Thus, the template consists of a graphic part (a set of figures) and a structural description (grammar). An implementation of this verification method is demonstrated as a software system for verifying of descriptive geometry task solutions in the form of DXF-files. A functional model of the verification system is given. The automatic formation of a template from a graphical model, which is created in a vector graphics editor and does not require a symbolic description, is considered, as well as processing procedure for a student’s solution, during which the verifiable model goes through phases of normalization, filtration, and extracting of higher-level elements. An example of checking for two solutions (the correct one and containing errors) of the task for constructing a perpendicular to a plane of general position is given. The work of a subsystem for verification result visualization is demonstrated too. The created system can be implemented in Internet-libraries of tasks, or in distance learning systems, and can be used for remote support of geometric-graphic courses. Conclusions about feasibility of introducing the proposed method as a tool in CAD-systems are made.
descriptive geometry, distance learning, Internet-libraries of tasks, task solution computer verification, functional model, DXF, grammar of task proper solution, verification result visualization
1. Artsikhovskaya-Kuznetsova L. O golovolomnosti nachertatel’noj geometrii [Puzzles of Descriptive Geometry]. Geometriya i grafika [Geometry & Graphics]. 2014, V. 2, I. 3, pp. 31–35. DOI: 10.12737/6523. (in Russian)
2. Belim S.S., Boykov A.A., Korovina A.V. Ob odnom podhode k ispol’zovaniju parametrizovannyh modelej i parametricheskih CAD-sistem [About one approach to use parameterized models and parametric CAD systems]. Innovacionnyje tehnologii v inzhenernoj grafike: problemy i perspektivy [Innovative technologies in engineering graphics: problems and prospects]. 2020. Available at: http://ng.sibstrin.ru/brest_novosibirsk/2020/doc/007.pdf (accessed 6 July 2020). (in Russian)
3. Beshaposhnikov N.O. O razlichnyh podhodah k proverke reshenija graficheskih zadach [On various approaches to automated grading of graphic assignments]. Trudy nauchno-issledovatel’skogo instituta sistemnyh issledovanij RAN [Proceedings of the Research Institute for System Studies of the Russian Academy of Sciences]. 2019, V. 9, I. 6, pp. 148–155. (in Russian)
4. Bobrovskikh A.S. Razrabotka obuchajuchshej sistemy dlja algoritmov nachertatel’noj geometrii [Development of the teaching system for the descriptive geometry algorithms with switch technology usage]. Vestnik komp’juternyh i informacionnyh tehnologij [Bulletin of computer and information technology]. 2011, I. 1(79), pp. 38–43. (in Russian)
5. Boykov A.A. Avtomatizacija proverki inzhenerno-graficheskih zadanij [Automation of verification of engineering and graphic tasks]. Problemy kachestva graficheskoj podgotovki studentov v technicheskom vuze: tradicii i innovacii [Problems of quality of graphic preparation of students in a technical university: traditions and innovations]. Perm, PNIPU Publ. 2016. V. 1, pp. 99–120. (in Russian)
6. Boykov A.A., Fedotov A.M. Avtomaticheskaja proverka reshenij zadach inzhenernoj geometrii [Automated verification of engineering geometry task solution]. Graphicon'2016. Trudy 26-j Mezhdunarodnoj nauchnoj konferencii [Graphicon’2016 Proceedings of the 26th International Scientific Conference]. Moscow–Protvino, 2016, pp. 352–356 (in Russian)
7. Boykov A.A. Analiz podhodov k sozdaniju sistemy komp’juternoj proverki konstruktivnyh zadach inzhenernoj geometrii [Analysis of approaches to creating a system of computer verification of solutions to structural problems of engineering geometry]. Nadezhnost’ i dolgovechnost’ mashin i mehanizmov [Reliability and durability of machines and mechanisms. Proceedings of the IX All-Russian Scientific and Practical Conference]. Ivanovo, 2018. pp. 400–403. (in Russian)
8. Boykov A.A., Fedotov A.M. Vnedrenije sredstv avtomaticheskoj proverki reshenij konstructivnyh zadach inzhenernoj geometrii v CAD-sistemu [Implementing tools of the automatically verifying of the solutions of engineering geometry constructive problems to CAD]. GraphiCon 2019: Trudy 29-j Mezhdunarodnoj nauchnoj konferencii po komp’juternoj grafike i mashinnomu zreniju [Graphicon’2019 Proceedings of the 29th International conference in computer graphics and machine vision]. Bryansk. 2019, pp. 172–175. (in Russian)
9. Boykov A.A., Fedotov A.M. Ispol’zovanije polifigur dlja validacii i verifikacii vychislitel’nyh modelej v sisteme komp’juternoj proverki reshenij zadach inzhenernoj geometrii [Using of the polyfigures in the system of automated verifying of engineering geometry task solutions for validation problems]. GraphiCon 2017: Trudy 27-j Mezhdunarodnoj nauchnoj konferencii po komp’juternoj grafike i mashinnomu zreniju [Graphicon’2017 Proceedings of the 27th International conference in computer graphics and machine vision]. Perm. 2017, pp. 335–338 (in Russian)
10. Boykov A.A. Konstruktivno-geometricheskije osnovy i metodika mashinnoj properki chertezhej v obuchajuchshih sistemah [Constructive geometrical basis and the method of automated assessment of drawings for learning system]. Vestnik Kostromskogo gosudarstvennogo universiteta. Serija: Pedagogika. Psihologija. Sociokinetika [Bulletin of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics]. 2016, V. 22, I. 1, pp. 163–167. (in Russian)
11. Boykov A.A. Podsistema proverki DXF-chertezhej zadach po nachertatel’noj geometrii [Subsystem for verifying of DXF-drawings with solutions of descriptive geometry tasks]. Svidetel’stvo o gosudarstvennoj registracii programmy dlja EhVM. No. 2016613575 from 29.03.2016 [Certificate of state registration of computer programs No. 20166613575 of 03/29/2016]. 1 p.
12. Voloshinov D.V. Visual’no-graficheskoje projektirovanije edinoj konstructivnoj modeli dlja reshenija analogov zadachi Apollonija s uchetom mnimyh geometricheskih obrazov [Visual-Graphic Design of a Unitary Constructive Model to Solve Analogues For Apollonius Problem Taking into Account Imaginary Geometric Images]. Geometriya i grafika [Geometry & Graphics]. 2018, V. 6, I. 2, pp. 23–46. DOI: 10.12737/article_5b559c70becf44.21848537. (in Russian)
13. Girsh A.G. Novyje zadachi nachertatel’noj geometrii [New Problems of Descriptive Geometry]. Geometriya i grafika [Geometry & Graphics]. 2019, V. 7, I. 4, pp. 18-33. DOI: 10.12737/2308-4898-2020-18-33. (in Russian)
14. Gubanov A.N. Avtomatizirovannaja sistema obuchenija osnovam geometricheskogo modelirovanija v SAPR. Kand. Diss [An automated system for teaching the basics of geometric modeling in CAD. Cand. Diss]. Samara. 2003. 135 p. (in Russian)
15. Dorzhiev C.C. Razrabotka i metodicheskije rekomendacii po primeneniju avtomatizirovannoj obuchajushchej sistemy (AOS) po nachertatel’noj geometrii v uchebnom processe [Development and guidelines for the use of an automated teaching system (AOS) for descriptive geometry in the educational process]. Ulan-Ude, VSGTU Publ. 2004. pp. 36–43. (in Russian)
16. Zadruckij S.A., Rezanko A.A., Stoler V.A. Reshenije zadach po nachertatel’noj geometrii grafoanaliticheskim sposobom s primenenijem PEhVM [Solving problems in descriptive geometry using the graphic-analytical method using a personal computer]. Minsk, BGUIR Publ., 2003, 52 p. (in Russian)
17. Karabchevkij V.V. Avtomaticheskaja generacija reshenija zadach nachertatel’noj geometrii kak sredstvo formirovanija ehtalonov v podsisteme testirovanija [Automatic generation of solutions to descriptive geometry problems as a means of forming standards in the testing subsystem]. Nauchnyje Trudy Doneckogo nacional’nogo tehnicheskogo universiteta. Serija «Problemy modelirovanija i avtomatizacii proektirovanija dinamicheskih sistem» (MAP-2002) [Scientific works of Donetsk National Technical University. Series «Problems of modeling and design automation of dynamic systems» (MAP-2002)]. V. 52. Donetsk, DonNTU Publ. 2002. 248 p. (in Russian)
18. Kargin D.I. Gaspar Monzh i ego «Nachertatel’naja geometrija». Prilozhenije k knige Gaspara Monzha «Nachertatel’naja geometrija» [Gaspard Monge and his Descriptive Geometry. Appendix to the book «Descriptive geometry»]. Leningrad, USSR Academy of Sciences Publ., 1947, pp. 245–257. (in Russian)
19. Kisljakov V.V., Osovets S.V. Programmnyj kompleks dlja postanovki i reshenija zadach po nacertatel’noj geometrii [Software package for the formulation and solution of problems in descriptive geometry]. Ehlektronnaja konferencija EhNIT–2000, Ul’janovsk (Russia) [Electronic Conference ENIT-2000, May 17–19, Ulyanovsk (Russia)]. Available at: http://masters.donntu.org/2004/fvti/proglyadova/library/article3.htm (accessed 17 January 2016). (in Russian)
20. Kozinec D.G., Polozkov Ju. V. Programmno-metodicheskij kompleks podderzhki processa podgotovki i kontrolja znanij po nachertatel’noj geometrii [Program and methodological complex for supporting the process of graphic preparation and control of knowledge in descriptive geometry]. Innovacionnyje tehnologii v inzhenernom obrazovanii [Innovative technologies in engineering education: proceedings of the international scientific and practical conference, Minsk, April 27–28. 2011]. Minsk, 2011, pp. 247–249. (in Russian)
21. Nazarova O. N. Analiz nekotoryh zadach kursa teoretiheskoj mehaniki, resaemyh metodami nachertatel’noj geometrii [Analysis of Some Problems from a Course on Theoretical Mechanics Solved by Descriptive Geometry’s Methods]. Geometriya i grafika [Geometry & Graphics]. 2019, V. 7, I. 4, pp. 76-83. DOI: 10.12737/2308-4898-2020-76-83. (in Russian)
22. N’jumen U., Sprull R. Osnovy interactivnoj mashinnoj grafiki [Principles of interactive computer graphics]. Moscow, Mir Publ., 1976. 576 p. (in Russian)
23. Panchuk K. L., Lyubchinov E. V. Ciklograficheskaja interpretacija i komp’uternoje reshenije odnoj sistemy algebraicheskih uravnenij [Cyclographic Interpretation and Computer Solution of One System of Algebraic Equations]. Geometriya i grafika [Geometry & Graphics]. 2019, V. 7, I. 3, pp. 3–14. DOI: 10.12737/article_5dce5e528e4301.77886978. (in Russian)
24. Polozov V.S. etc. Avtomatizirovannoje projektirovanije [Computer Aided Design]. Moscow, Mashinostrojenije Publ., 1983. 280 p. (in Russian)
25. Polubinskaya L. G., Khusnetdinov T. R., Maksutova R. A. Formal’naja logika i algoritmy v prepodavanii nachertatel’noj geometrii [Formal logic and algorithms in teaching descriptive geometry]. Pedagogika. Voprosy teorii i praktiki [Pedagogy. Questions of theory and practice]. 2018, I. 1, pp. 97–102. (in Russian)
26. Zadruckij S.A. Reshenije zadach po nachertatel’noj geometrii s primenenijem PEhVM (Programma DrawCAD) [Solving problems in descriptive geometry using a personal computer (DrawCAD program)]. Minsk, BGUIR Publ. 2006. 52 p. (in Russian)
27. Savel'ev Y. A., Babich E. V. Komp’juternaja metodika izuchenija nachertatel’noj geometrii [Computer Method for Learning of Descriptive Geometry. Technical Task]. Geometriya i grafika [Geometry & Graphics]. 2018, V. 6, I. 1, pp. 67–74. DOI: 10.12737/article_5ad09d62e8a792.47611365. (in Russian)
28. Sal'kov N. A. Geometrichesaja sostavljajuchshaja tehnicheskih innovacij [The Geometric Component of Technical Innovations]. Geometriya i grafika [Geometry & Graphics]. 2018, V. 6, I. 2, pp. 85-93. DOI: 10.12737/article_5b55a5163fa053.07622109. (in Russian)
29. Tunakov A.P. Zachem prepodavat’ studentam umirajushchije discipliny [Why teach students dying disciplines]. Poisk [Search]. 2007, I. 11 (929). (in Russian)
30. Hejfec A.L. Avtomatizirovannyj kollokvium kak novaja forma kontrolja znanij po graficeskim disciplinam [Automated colloquium as a new form of knowledge control in graphic disciplines]. Available at: http://dgng.pstu.ru/conf2010/papers/39/ (accessed 17 March 2016). (in Russian)
31. Hejfec A.L. Nachertatel’naja geometrija kak «beg v meshkah» [Descriptive Geometry as Bagged Running]. Problemy kachestva graficheskoj podgotovki studentov v technicheskom vuze: tradicii i innovacii [Problems of quality of graphic preparation of students in a technical university: traditions and innovations]. Perm, PNIPU Publ. 2015. V. 1, pp. 298–325 (in Russian)
32. Shmulenkova E.E. Opyt i analiz vnedrenija sistemy proverki graficheskih postroenij v uchebnyj process [Experience and analysis of the implementation of the system of verification of graphic constructions in the educational process]. Omskij nauchnyj vestnik [Omsk Scientific Herald]. 2008, I. 4 (73), pp. 172–177. (in Russian)
33. AutoCAD 2000 DXF Reference. – Available at: http://www.autodesk.com/techpubs/autocad/acad2000/dxf/index.htm (accessed 17 January 2016).
34. Goh, K., Manao, R. Assessing engineering drawings through automated assessment: discussing mechanism to award marks. International Journal of Smart Home. 2013. V. 7, I. 4, pp. 327–336.
35. Goh, K., Shukri, S., Manao, R. Automatic Assessment for Engineering Drawing. Soft Computing and Software Engineering. 2013. pp. 497–507.
36. Isotani, S., Brandao, L.O. An algorithm for automatic checking of exercises in a dynamic geometry system: iGeom. Computers & Education. 2008. V. 51, pp. 1283–1303.
37. Tanaka I. A self checking CAD tool for mechanical drawings in introductory courses. Proceedings of the 16th International Conference on Geometry and Graphics. Innsbruck, August 4–8, 2014. Innsbruck university press, 2014. pp. 1111–1116.
38. Toledo I., Rojas J.I. A proposal for an on-line library of Descriptive Geometry Problems. 9th International Conference on Geometry and Graphics. Journal of Geometry Graphics. V. 5. 2001. pp. 93–100.