Russian Federation
At present, the theory of fractional calculus is widely used in many fields of science for modeling various processes. Differential equations with fractional derivatives are used to model the migration of pollutants in porous inhomogeneous media and allow a more correct description of the behavior of pollutants at large distances from the source. The analytical solution of differential equations with fractional order derivatives is often very complicated or even impossible. There has been proposed a numerical method for solving fractional differential equations in partial derivatives with respect to time to describe the migration of pollutants in groundwater. An implicit difference scheme is developed for the numerical solution of a non-stationary fractional differential equation, which is an analogue of the well-known implicit Crank-Nicholson difference scheme. The system of difference equations is presented in matrix form. The solution of the problem is reduced to the multiple solution of a tridiagonal system of linear algebraic equations by the tridiagonal matrix algorithm. The results of evaluating the spread of pollutant in groundwater based on the numerical method for model examples are presented. The concentrations of the substance obtained on the basis of the analytical and numerical solutions of the unsteady one-dimensional fractional differential equation are compared. The results obtained using the proposed method and on the basis of the well-known analytical solution of the fractional differential equation are in fairly good agreement with each other. The relative error is on average 9%. In contrast to the well-known analytical solution, the developed numerical method can be used to model the spread of pollutants in groundwater, taking into account their biodegradation.
fractional derivative, time derivative, fractional differential equation, difference scheme, groundwater
1. Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurkov Yu. I. Nekotorye osobennosti vychislitel'nyh algoritmov dlya uravneniy drobnoy diffuzii. M.: Izd-vo In-ta problem bezopasnogo razvitiya atomnoy energetiki RAN, 2002. 57 s.
2. Goloviznin V. M., Kiselev V. P., Korotkin I. A. Chislennye metody resheniya uravneniy drobnoy diffuzii v odnomernom sluchae. M.: Izd-vo In-ta problem bezopasnogo razvitiya atomnoy energetiki RAN, 2002. 35 s.
3. Merkulova N. N., Mihaylov M. D. Metody priblizhennyh vychisleniy: ucheb. posobie. Tomsk: Izd-vo TGU, 2011. Ch. III. 184 s.
4. Samarskiy A. A., Gulin A. V. Chislennye metody. M.: Nauka, 1989. 432 s.
5. Verzhbickiy V. M. Chislennye metody. M.: Vyssh. shk., 2001. 382 s.
6. Baykov V. A., Zhiber A. V. Uravneniya matematicheskoy fiziki. M.; Izhevsk: Izd-vo In-ta komp'yuternyh issledovaniy, 2003. 252 s.
7. Samarskiy A. A., Nikolaev E. S. Metody resheniya setochnyh uravneniy. M.: Nauka, 1987. 130 s.
8. Tihonov A. N., Samarskiy A. A. Uravneniya matematicheskoy fiziki. M.: Nauka, 1977. 735 s.
9. Kustikova V. D. Differencial'nye uravneniya v chastnyh proizvodnyh. N. Novgorod: Izd-vo NGU im. N. I. Lobachevskogo, 2011. 54 s.
10. Hendi Ahmed Sand Abdelaziz. Chislennye algoritmy resheniya drobnyh differencial'nyh uravneniy s zapazdyvaniem: dis. … kand. fiz.-mat. nauk. Ekaterinburg, 2017. 124 s.
11. Shukla H. S., Tamsir M., Srivastava V. K., Kumar J. Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation // Computer Modeling in Engineering & Sciences. 2014. V. 103. N. 1. R. 1-17.
12. Samko S. G., Kilbas A. A., Marichev O. I. Integraly i proizvodnye drobnogo poryadka i nekotorye ih prilozheniya. Minsk: Nauka i tehnika, 1987. 687 s.
13. Shtumpf C. A., Bahtin M. A. Matematicheskie metody komp'yuternyh tehnologiy v nauchnyh issledovaniyah: ucheb. posobie. SPb.: Izd-vo NIU ITMO, 2012. 148 s.
14. Fadugba S. E., Nwozo C. R. Crank-Nicolson Finite Difference Method for the Valuation of Options // The Pacific Journal of Science and Technology. 2013. V. 14. N. 2. R. 136-145.
15. Wani S. S., Thakar S. H. Crank-Nicolson Type Method for Burgers Equation // International Journal of Applied Physics and Mathematics. 2013. V. 3. N. 5. R. 324-328.
16. Kilbas A. A., Trujillo J. J. Differential equations of fractional order: methods, results and problems // Applicable Analysis. 2001. V. 78. N. 1. R. 153-192.
17. Atangana1 A., Kilicman A. On the Generalized Mass Transport Equation to the Concept of Variable Fractional Derivative // Mathematical Problems in Engineering. 2014. R. 1-9.
18. Erohin S. V. Matematicheskoe modelirovanie napryazhenno-deformirovannogo sostoyaniya vyazkouprugih tel s ispol'zovaniem metodov drobnogo ischisleniya: dis. … kand. tehn. nauk. M., 2016. 130 s.
19. Begli R. L., Torvik P. Dzh. Differencial'noe ischislenie, osnovannoe na proizvodnyh drobnogo poryadka - novyy podhod k raschetu konstrukciy s vyazkouprugim dempfirovaniem // Aerokosmicheskaya tehnika. 1984. T. 2. № 2. S. 84-91.
20. Caputo M. Linear model of dissipation whose Q is almost frequency independent // Geophis. J. R. Astr. Soc. 1967. V. 13. P. 529-539.
21. Caputo M., Mcinardi F. Linear models of dissipation in an elastic solids // Riv. Nuovo Cimento. 1971. V. 1. R. 161-196.
22. Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM № 2019614483. Programmnoe obespechenie dlya modelirovaniya rasprostraneniya zagryaznyayuschih veschestv v podzemnyh vodah / Afanas'eva A. A., Nazarenko D. I., Shvecova-Shilovskaya T. N., Kazarezova E. V.; zareg. 26.03.2019; opubl. 05.04.2019.