The biogeosystem engineering is considered, and the verification of the biological, recreational, productive-economic resources of the soil-reclamation agrotechnics based on the rotary milling subsoiling is performed. The test data of the first-generation rotary milling subsoiling facility is provided. A fundamentally new engineering solution is developed. The structural synthesis of the new rotary milling subsoiling facility options in the second- and third-order approximations is performed. The draught minimization of the new facility under its operation is provided. The optimization criterion for the engineering solution synthesis results is developed; the facility parametric synthesis is performed; comparative energy characteristics of the new facility and prototype are given. The rotary milling chisel plough-gearbox transmits torque without passive draught to the tillage tool, and to the subsoiling one that operates full dip being horizontally located and moving progressively at the given depth of 20-48 cm. The possibility of the reliable operation in the soil of the new engineering solution interconnect system is proved. The assignment and reliability indices of the subsoiling rotary milling facilities are given. Performance physics and physics of failures are considered; the new engineering solution reliability is proved. The fundamentally new principles of the innovation project development and the implementation of the land development plans in Russia are proposed.
dispersion system, biogeosystem engineering, rotary milling subsoiling, mechanism synthesis, torque transfer, traction and power balance, reliability.
УДК 631.1:631.459(470.61):633.11
Технические средства внутрипочвенного рыхления с малым тяговым сопротивлением
В. П. Калиниченко, В. К. Шаршак, Е. П. Ладан, В. В. Илларионов,
Е. Д. Генев
Рассмотрена биогеосистемотехника, выполнена верификация биологической, рекреационной, производственно-экономической содержательности почвенно-мелиоративной агротехники на базе внутрипочвенного роторного фрезерного рыхления. Приведены данные испытаний технического средства внутрипочвенного роторного фрезерного рыхления первого поколения, разработано принципиально новое техническое решение. Выполнен синтез структуры вариантов нового технического средства внутрипочвенного роторного фрезерного рыхления во втором и третьем приближениях. Обеспечена минимизация тягового сопротивления нового технического средства при его функционировании. Выработан критерий оптимизации результатов синтеза технического решения, выполнен параметрический синтез устройства, даны сравнительные энергетические характеристики нового устройства и прототипа. Роторный щелерез-редуктор передает без пассивного тягового сопротивления крутящий момент к почвообрабатывающему инструменту, а также к внутрипочвенному, работающему с полным погружением, расположенному горизонтально и перемещаемому поступательно на заданной глубине 20-48 см.
Обоснована возможность надежного функционирования в почве системы взаимосвязей нового технического решения. Приведены показатели
1. Kalinichenko, V.P., et al. Izmeneniye pochv solontsovogo kompleksa za 30-letniy period posle otvalnoy, trekhyarusnoy i novogo priyema rotorno-frezernoy obrabotki. [Solonetzic complex soils modification for 30-year period after moldboard, three-level, and a new practice rototilling.] Pochvovedeniye, 2011, no. 8, pp. 1010–1022 (in Russian).
2. Kalinitchenko, V. P., et al. The dynamics of solonetzic soils associa-tions properties after 30 years of reclamation. Effect of soil phosphogypsum reclamation on the lead and cadmium forms in chernozem. Eurosoil 2012 : Proc. of the 4th Internat. Congress 2–6 July 2012. Bari, 2012, 2623 p.
3. Kalinitchenko, V. P., et al. Soil ecosystem management in birdlime utilization. Yevropeyskiy issledovatel, 2012, vol. 25, no. 7, pp. 1042–1049.
4. Minkin, M.B., Ladan, E.P., Bondarenko, T.N. Podpokrovno-frezernaya meliorativnaya obrabotka solontsovykh pochv. [Undercover reclamation rototilling of solonetzic soils.] Mezhdunarodnyy selskokhozyaystvennyy zhurnal, 1978, no. 5, pp. 92–93 (in Russian).
5. Sharshak, V.K. Otsenka mashin i orudiy dlya osnovnoy obrabotki solontsovykh pochv. [Evaluation of machines and tools for primary processing of solonetzic soils.] Mekhanizatsiya i elektrifikatsiya selskogo khozyaystva,1987, no. 3, pp. 17–19 (in Russian).
6. Protokol vedomstvennykh ispytaniy frezy solontsovoy FS-1,3. Ministerstvo selskogo khozyaystva RSFSR, Vsesoyuznyy nauchno-issledovatelskiy institut mekhanizatsii i elektrifikatsii selskogo khozyaystva, Donskoy zonalnyy nauchno-issledovatelskiy institut selskogo khozyaystva, Donskoy selskokhozyaystvennyy institut. [Protocol of departmental testing of solonetz tiller FS-1,3. Ministry of Agriculture of RSFSR, All-Union scientific-research institute for farm mechanization and electrification, Don zonal agricultural research institute, Don agricultural institute.] Zernograd, 1977, 14 p. (in Russian).
7. Akt № 24–39V…42V–89 (9069110…9069114) gosudarstvennykh sravnitelnykh ispytaniy solontsovykh orudiy PYaS-1,4; PYaS-4-35; MSP-2; PS-3-40 / Gosudarstvennyy agropromyshlennyy komitet SSSR, Severo-Kavkazskaya gosudarstvennaya ma-shinoispytatelnaya stantsiya. [Governmental comparative test certificate no. 24–39В…42В–89 (9069110…9069114) on solonetz tools PYaS-1,4; PYaS-4-35; MSP-2; PS-3-40. State Agriculture Committee of the USSR, North Caucasian state machine-test station.] Zernograd, 1989, 21p. (in Russian).
8. Artobolevskiy, I.I. Teoriya mekhanizmov i mashin. [Theory of machines and mechanisms.] Moscow: Nauka, 1988. — 640 с. (in Russian).
9. Latypov, N.N., Yelkin, S.V., Gavrilov, D.A.; Wassermann, A.A., ed. Inzhenernaya evristika. [Engineering heuristics.] Moscow: Astrel, 2012, 320 p. (in Russian).
10. Checkland, P. Systems Thinking, Systems Practice. Chichester: J. Wiley, 1999, 330 p.
11. Hamdy A. Taha. Operations Research: An Introduction. 9th edition. Arkansas: Prentice Hall, 2011, 832 p.
12. Rausand, M., Hoyland, A. System reliability theory: models, statistical methods and applications. New York: John Wuiley & Sons, 2004, 636 p.
13. Sharshak, V.K., et al. Rabochiy organ dlya obrabotki pochv, podverzhennykh vodnoy erozii : patent RU 442759 : MPK A01B49/02. [Tilling tool for water erosion-prone lands: RU 442759: MPK A01B49/02.] Russian patent no. 1855059/30-15, 1974, 2 p. (in Russian).
14. Kalinichenko, V. P. Ustroystvo dlya rotatsionnogo vnutripochvennogo rykhleniya : patent RU 2376737 S1 : MPK A01V 33/02 (2006.01) A01V 33/02 (2006.01). [Internal soil rototiller: RU patent 2376737 C1: MPK A01V 33/02 (2006.01) A01V 33/02 (2006.01).] Patent RF no. 2008118583/12(021536), 2009, 7 p. (in Russian).
15. Polimer-Tekh. Available at: http://www.polimer-tech.ru/history.html (accessed: 26. 03.13) (in Russian).
16. Kalinichenko, V. P. Ustroystvo dlya rotatsionnogo vnutripochvennogo rykhleniya : patent RU 2407255 S1 : MPK Kl. A01V 13/16 (2006.01). [[Internal soil rototiller: RU patent 2407255 C1: MPK Kl. A01V 13/16 (2006.01).] Patent RF no. 2009127403/21(038119), 2010, 8 p. (in Russian).
17. Kalinichenko, V. P. Ustroystvo dlya differentsirovannogo upravleniya glubinoy obrabotki pochvy pri frontalnom rotatsionnom vnutripochvennom rykhlenii v agregate s traktorom s shagovym elektricheskim upravleniyem gidravlicheskim raspredelitelem navesnoy sistemy : patent RU 2407256 S1 : MPK Kl. A01V 13/16 (2006.01). [Tool for variable management of soil treatment depth under front rotary internal soil loosening in the unit with tractor with step electric control of hydraulic system-mounted dispenser: RU patent 2407256 C1: MPK Kl. A01V 13/16 (2006.01)] Patent RF no. 2009127405/21(038121), 2010, 10 p. (in Russian).
18. Kousholt, B. Project Management. Theory and practice. Copenhagen: Nyt Teknisk Forlag, 2007,p. 59.
19. Barnard, R.-W.-A. What is wrong with Reliability Engineering? Lamb-da Consulting. Pretoria: INCOSE, 2008, 9 p.
20. GOST R 53480-2009. Nadezhnost v tekhnike. Terminy i opredeleniya. [GOST R 53480-2009. Dependability in technics. Terms and definitions.] Federalnoye agentstvo po tekhnicheskomu regulirovaniyu i metrologii. [Federal Agency for Technical Regulation and Metrology.] Moscow: Standartinform, 2010, 33 p. (in Russian).
21. Lelikov, О.P. Osnovy rascheta i proyektirovaniya detaley i uzlov mashin. [Basis of calculation and design of machine parts and units.] Moscow: Mashinostroyeniye, 2002, 440 p. (in Russian).
22. DEF STAN 00-40 Reliability and Maintainability (UK standards) Available at: http://segoldmine.ppi-int.com/content/standard-def-stan-00-40-reliability-and-maintainability-rm (accessed: 12.04.13).
23. Laplante, Ph. Requirements Engineering for Software and Systems. 2nd ed. Ph. Laplante. Boca Raton: CRC Press, 2010, 302 p.
24. Akt proverki sootvetstviya mekhanicheskogo privoda rabochego organa rotatsionnogo rykhlitelya podgumusovogo sloya pochvy patentu na izobreteniye 2273120 ot 10 aprelya 2006 goda. [Certificate of inspection to verify that the rototiller mechanical drive tool for underhumus soil layer conforms to the invention patent 2273120 of 10 April, 2006.] FGU Severo-Kavkazskaya mashinno-ispytatelnaya stantsiya, 2006, 1 p. (in Russian).
25. Rotating cultivator for under-humus soil layer. Patent Switzerland cooperation treaty WО 2005/099427 А1: Classification of subject matter: А01В 13/08, 13/16, 49/02. International application: PCT RU/2005/000195. Institut Plodorodiya Pochv Uga Rossii (IPPYUR); The international Bureau of WIPO. Priority date: 16.04.2004 RU, 29 p.
26. Sudnitsyn, I.I. Mozhet li «uluchsheniye» pochv privesti k ikh «ukhudsheniyu»? [Can soil “amelioration” lead to its “degradation”?] Pochvovedeniye, 2008, no. 9, pp. 1132–1133 (in Russian).
27. Zinchenko, V.E., et al. Ekologo-ekonomicheskaya effektivnost innovatsionnoy tekhnologii obrabotki pochv. [Eco-economic efficiency of innovative technologies of soil processing.] Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Obshchestvennyye nauki. 2010, no. 4, pp. 93–99 (in Russian).