graduate student
employee
employee
employee
V stat'e rassmatrivaetsya vliyanie somaticheskogo ekstrakta Anisakis simplex L3 na kul'tury kletok mikroorganizmov in vitro. Ranee ustanovleno, chto pod deystviem ukazannogo ekstrakta narushaetsya i ugnetaetsya process deleniya eukarioticheskih kletok. Svedeniy o mehanizmah vzaimodeystviya somaticheskih ekstraktov gel'mintov i mikroorganizmov ochen' malo. Predpolagaetsya, chto somaticheskiy ekstrakt iz anizakid okazyvaet negativnoe vliyanie na mikroorganizmy za schet vhodyaschih v ego sostav belkovyh komponentov i metabolitov. Cel'yu issledovaniya yavlyalos' izuchenie vliyaniya ekstrakta na kul'tury kletok raznoobraznyh mikroorganizmov, kak po morfologicheskim priznakam, tak i po ustoychivosti k faktoram vneshney sredy. Ekstrakt gotovili iz lichinok anizakid, izvlechennyh iz zamorozhennoy putassu (Micromesistius poutassou), proveryali na steril'nost' i bezvrednost', opredelyali soderzhanie belka. Dlya issledovaniya ispol'zovali sutochnye kul'tury bakteriy: mikrokokki Micrococcus sp., palochki Escherichia coli, Proteus vulgaris, Salmonella tiphimurium i bacilly Bacillus subtilis. Pri kul'tivirovanii mikroorganizmov s diskami, propitannymi antigennym ekstraktom anizakid, v termostate pri +37 °S cherez 12 chasov vyyavlena zona zaderzhki rosta u Micrococcus sp., E. coli i P. vulgaris. Na rost bakteriy palochek S. tiphimurium, bacill B. subtilis ekstrakt vliyaniya ne okazyval. Formirovanie vyrazhennoy zony steril'nosti svidetel'stvuet o nalichii v sostave belkovogo ekstrakta biologicheski-aktivnyh komponentov, obladayuschih bakteriostaticheskim deystviem. Obsuzhdayutsya mehanizmy bakteriostaticheskogo deystviya somaticheskogo ekstrakta. Poluchennye v hode eksperimenta dannye podtverzhdayut antagonisticheskie otnosheniya belkovyh produktov lichinok Anisakis simplex L3 i mikroorganizmov, soglasuyuschihsya s literaturnymi dannymi. Vyyavlena razlichnaya stepen' aktivnosti antigenov somaticheskogo ekstrakta iz anizakid na kul'tury mikroorganizmov, naibol'shee vliyanie ekstrakt okazal na kul'tury palochek E. coli i mikrokokkov Micrococcus sp. Poluchennye rezul'taty mozhno ispol'zovat' dlya razrabotki modeli bakterial'nyh kletok kak test ob'ektov dlya ocenki antigennoy aktivnosti somaticheskih, ekskretorno-sekretornyh ekstraktov i metabolitov razlichnyh gel'mintov.
somaticheskiy ekstrakt, Anisakis simplex L3, metabolity, bakterii, bacilly, bakteriostaticheskoe deystvie.
1. MUK 4.2.1890-04. Opredelenie chuvstvitel'nosti mikroorganizmov k antibakterial'nym preparatam : metodicheskie ukazaniya. M. : Federal'nyy centr Gossanepidnadzora Minzdrava Rossii, 2004. 125 c.
2. Volkova L. V., Grishina T. A., Volkov A. G. Nizkomolekulyarnye kationnye peptidy leykocitov, inducirovannye razlichnymi antigenami // Vestnik PNIPU. Himicheskaya tehnologiya i biotehnologiya. 2015. № 4. S. 35–48.
3. Sivkova T. N. Poluchenie i harakteristika antigenov gel'mintov : uchebno-metodicheskoe posobie / sost. T. N. Sivkova. Perm' : Permskaya GSHA, 2009. 14 s.
4. Sivkova T. N. Kariopaticheskoe i patomorfologicheskoe deystvie produktov metabolizma lichinok anizakid : monografiya. Perm' : Permskaya GSHA, 2011. 132 s.
5. Abner S. R., Parthasarathy G., Hill D. E., Mansfield L. S. Trichuris suis: detection of antibacterial activity in excretory-secretory products from adults // Exp. Parasitol. 2001. No. 99. R. 26–36.
6. Andersson M., Boman A., Boman H. H. Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides // Cell. Mol. Life Sci. 2003. No. 60. R. 599–606.
7. Audicana M. T., Kennedy M. W. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity // Clin Microbiol. Rev. 2008. No. 21. R. 360–379.
8. Belas R., Manos J., Suvanasuthi R. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides // Infect. Immun. 2004. No. 72. R. 5159–5167.
9. Delmar J. A., Su C. C., Yu E. W. Bacterial multidrug efflux transporters // Annu. Rev. Biophys. 2014. No. 43. R. 93–117.
10. Drake L., Korchev Y., Bashford L., Djamgoz M., Wakelin D., Ashall F. et al. The major secreted product of the whipworm, Trichuris, is a pore-forming protein // Proc. Biol. Sci. 1994. No. 257. R. 255–261.
11. Eberle R., Brattig N.W., Trusch M., Schlüter H., Achukwi M. D., Eisenbarth A., Renz A., Liebau E., Perbandt M., Betzel C. Isolation, identification and functional profile of excretory-secretory peptides from Onchocerca ochengi // Acta Trop. 2015. No. 142. R. 156–166.
12. Fæste C. K., Jonscher K. R., Dooper M. et al. Characterisation of potential novel allergens in the fish parasite Anisakis simplex // EuPA Open Proteomics. 2014. No. 4. R. 140–155.
13. Fæste C. K. Fish feed as source of potentially allergenic peptides from the fish parasite Anisakis simplex (S. L.) // Animal feed science and technology. 2015. No. 202. R. 52–61.
14. Haarder S., Kania P. W., Holm T. L., Gersdorff J. L., Buchmann K. Effect of ES products from Anisakis (Nematoda: Anisakidae) on experimentally induced colitis in adult zebra fish // Parasite Immunol. 2017. V. 39. I. 10. P. 66.
15. Joo H. S., Fu C. I., Otto M. Bacterial strategies of resistance to antimicrobial peptides // Philos Trans. R. Soc. Lond. B. Biol. Sci. 2016. No. 26. P. 1–11.
16. Kato Y. Humoral defense of the nematode Ascaris suum: antibacterial, bacteriolytic and agglutinating activities in the body fluid // Zoolog. Sci. 1995. No. 12. R. 225–230.
17. Mehrdana F., Buchmann K. Excretory secretory products of anisakid nematodes: biological and pathological roles // Acta Veterinaria Scandinavica. 2017. No. 59:42. R. 1–12.
18. Midha A., Schlosser J., Hartmann S. Reciprocal Interactions between Nematodes and Their Microbial Environments // Frontiers in Cellular and Infection Microbiology. 2017. V. 7:144. R. 1–20.
19. Peschel A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor Mpr F is based on modification of membrane lipids with L-lysine // J. Exp. Med. 2001. No. 193. R. 1067–1076.
20. Reynolds L. A., Finlay B. B., Maizels R. M. Cohabitation in the intestine: interactions between helminth parasites, bacterial microbiota and host immunity // Journal of immunology. 2015. 195. No. 9. R. 4059–4066.
21. Schmidtchen A., Frick I. M., Andersson E., Tapper H., Bjorck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37 // Mol. Microbiol. 2002. No. 46. R. 157–168.
22. Silhavy T. J., Kahne D., Walker S. The bacterial cell envelope. Cold Spring Harb. // Perspect. Biol. 2010. No. 2 (5). P. 87.
23. Shelton C. L., Raffel F. K., Beatty W. L., Johnson S. M., Mason K. M. Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus // PLoS Pathog. 2011. No. 7 (11). P. 44.
24. Svanevik C. S., Lunestad B. T., Levsen A. Effect of Anisakis simplex (sl) larvae on the spoilage rate and shelflife of fish mince products under laboratory conditions // Food Control. 2014. No. 46. R. 121–126.
25. Tarr D. E. K. Distribution and characteristics of ABFs, cecropins, nemapores, and lysozymes in nematodes // Dev. Comp. Immunol. 2012. No. 36. R. 502–520.
26. Wardlaw A. C., Forsyth L. M., Crompton D.W. Bactericidal activity in the pig roundworm Ascaris suum // J. Appl. Bacteriol. 1994. No. 76. R. 36–41.
27. Zhang H., Yoshida S., Aizawa T., Murakami R., Suzuki M., Koganezawa N. et al. In vitro antimicrobial properties of recombinant ASABF, an antimicrobial peptide isolated from the nematode Ascaris suum // Antimicrob. Agents Chemother. 2000. No. 44. R. 2701–2705.