employee
Cel': Pokazat' vozmozhnost' organizacii neytronnoy terapii na puchke fotoneytronov iz misheni moschnogo uskoritelya elektronov pri obespechenii trebuemoy dozy v opuholi za priemlemoe vremya ekspozicii i pri minimal'nom obluchenii normal'nyh tkaney organizma pacienta. Material i metody: Generaciya neytronov iz misheni uskoritelya elektronov proishodit dvuhstupenchato: e- γ n, prichem v vybrannom diapazone energii elektronov 20–100 MeV vyhod tormoznogo izlucheniya mnogokratno (na ~3 poryadka) prevyshaet «poleznyy» vyhod neytronov. Otsyuda voznikaet problema izbiratel'nogo podavleniya «vrednogo» dlya luchevoy terapii fotonnogo izlucheniya pri minimal'nom oslablenii potoka neytronov v vyvodimom puchke. Dlya resheniya obschey zadachi formirovaniya puchka neytronov neobhodimogo spektral'nogo sostava i dostatochnoy intensivnosti reshen ryad raschetnyh zadach podbora optimal'noy konfiguracii i sostava bloka vyvoda puchka. Osoboe vnimanie udeleno minimizacii dopolnitel'nogo oblucheniya pacienta tormoznym (generaciya elektronami) i vtorichnym (generaciya neytronami) gamma-izlucheniem misheni i materialov bloka vyvoda. Rezul'taty: Poluchennaya konfiguraciya bloka vyvoda obespechivaet trebuemoe kachestvo puchka primenitel'no k zadacham neytronozahvatnoy terapii (NZT), kotoraya yavlyaetsya edinstvennoy konkurentosposobnoy tehnologiey neytronnoy terapii na fone massovogo primeneniya protonnoy terapii i dr. metodik, izbiratel'no porazhayuschih mishen' pri minimal'noy luchevoy nagruzke na okruzhayuschie organy i tkani. Pri harakteristikah kommercheski dostupnyh uskoriteley (sredniy tok 4 mA, energiya elektronov 35 MeV) plotnost' potoka epiteplovyh fotoneytronov, trebuemyh dlya NZT, na vyhode puchka na poryadok i bolee prevyshaet velichiny, harakternye dlya suschestvuyuschih i proektiruemyh reaktornyh puchkov. Vyvody: Predlozhennaya shema generacii i vyvoda fotoneytronov dlya NZT imeet ryad nesomnennyh preimuschestv pered tradicionnymi podhodami: a) primenenie uskoriteley elektronov dlya polucheniya neytronov gorazdo bezopasnee i deshevle ispol'zovaniya tradicionnyh reaktornyh puchkov; b) uskoritel' s mishen'yu, blok vyvoda puchka s neobhodimymi ustroystvami i osnastkoy mozhet byt' bez osobyh problem razmeschen na territorii kliniki; c) primenyaemaya mishen' – zhidkiy galliy, kotoryy takzhe sluzhit i teplonositelem, yavlyaetsya ekologicheski chistym materialom: ego aktivaciya ves'ma neznachitel'na i bystro (za ~ 4 sut) spadaet do urovnya fona.
uskoritel' elektronov, vol'fram-gallievaya mishen', tormoznoe izluchenie, fotoneytrony, neytronozahvatnaya terapiya, optimizaciya harakteristik puchka
Работа посвящена обсуждению возможности создания нейтронного источника высокой интенсивности на основе жидкого галлия в составе комбинированной мишени мощного ускорителя электронов средних энергий. Кроме того, рассмотрены направления оптимизации выхода нейтронов из мишени и формирования спектра, необходимого для задач нейтронозахватной терапии (НЗТ). Основные принципы использования фотоядерных нейтронов, получаемых на электронных ускорителях, для производства радиоизотопов и медицины изложены в литературном источнике.
1. Kurachenko Yu.A., Voznesensky N.K., Goverdovsky A.A., Rachkov V.I. Novyi intensivnyi istochnik nejtronov dlya medicinskih prilozhenij [New intensive neutron source for medical application] // Medicinskaya fizika. 2012. № 2 (38). P. 29–38. (in Russian).
2. Kurachenko Yu.A. Fotonejtrony dlya nejtronozahvatnoj terapii [Photoneutrons for neutron capture therapy] // Izvestiya vuzov. Yadernaya energetika. 2014. № 4. P. 41 – 51. (in Russian).
3. Zamenhof R.G., Murray B.W., Brownell G.L. et al. Boron neutron capture therapy for the treatment of cerebral gliomas. 1: Theoretical Evaluation of the Efficacy of Various Neutron Beams // Med. Phys. 1975. Vol. 2. P. 47–60.
4. Blue T.E., Yanch J.C. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors // J. Neurooncol. 2003. Vol. 62. P. 19–31.
5. Zhou Y., Gao Z., Li Y., Guo C., Liu X. Design and construction of the in-hospital neutron irradiator-1(HNI) // In Proc. 12th ICNCT – Advances in Neutron Capture Therapy. 2006. October 9–13. Takamatsu. Japan. Eds. Nakagawa Y., Kobayashi T., Fukuda H. 2006. P. 557–560.
6. Nigg D.W. Neutron sources and applications in radiotherapy – A brief history and current trends // In: Advances in Neutron Capture Therapy 2006. Proc. 12th Intl. Cong Neutron Capture Therapy. Oct 9–13. Eds. Nakagawa Y., Kobayashi T., Fukuda H. Takamatsu. Japan. 2006. P. 623–626.
7. Kurachenko Yu.A. Optimizatciya bloka vyvoda reaktornogo puchka dlya luchevoj therapii [The reactor beam’s removal block optimization for radiation therapy] // Izvestiya vuzov. Yadernaya energetika. 2008. № 1. P. 129–138. (in Russian).
8. Tanaka H., Sakurai Y., Suzuki M. et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS) // Appl. Radiat. Isot. 2011. Vol. 69. P. 1642–1645.
9. The Basics of Boron Neutron Capture Therapy. Available address: http://web.mit.edu/nrl/www/bnct/facilities/facilities.html
10. MIT BNCT Facilities. Fission Converter Beam (FCB). Available address: http://web.mit.edu/nrl/www/bnct/facilities/MIT BNCT Facilities.htm
11. Reattore TAPIRO: ENEA Internal Document, DISP/TAP/85-1, 1985 // In: Design of neutron beams for boron neutron capture therapy in a fast reactor. Current status of neutron capture therapy. IAEA-TECDOC-1223, 2001.
12. Rosi G. et al. Role of the TAPIRO fast research reactor in neutron capture therapy in Italy. Calculations and measurements. IAEA-CN-100/97. // In: Research Reactor Utilization, Safety, Decommissioning, Fuel and Waste Management Proc. Internat. Conf. 10–14 November 2003 Santiago, Chile. P. 325–338.
13. Carta M., Palomba M. TRIGA RC-1 and TAPIRO ENEA Research Reactors. Доступно по адресу: https://www.iaea.org/OurWork/ST/NE/NEFW/Technical-Areas/RRS/documents/ TM_Innovation/Carta_ENEA.pdf.
14. General information and technical data of TAPIRO research reactor. Доступно по адресу: http://www.enea.it/en/research-development/documents/nuclear-fission/tapiro-eng-pdf.
15. Nuclear Research Reactor: TAPIRO. Доступно по адресу: http://old.enea.it/com/ingl/ New_ingl/research/energy/nucleare_fission/pdf/TAPIRO-ENG.pdf.
16. Kurachenko Yu.A., Kazanskij Yu.A., Levchenko A.B., Matusevich Eu.S. Vyvod nejtronnyh puchkov i zaschita meditcinskogo reaktora MARS [Neutron beam’s removing and protection for the medical MARS reactor] // Izvestiya vuzov. Yadernaya energetika. 2006. № 4. P. 36–48. (in Russian).
17. Kurachenko Yu.A., Moiseenko D.N. MARS i TAPIRO: reaktory maloj moschnosti dlya nejtrono-zahvatnoj terapii [MARS & TAPIRO: small-capacity reactors for neutron capture therapy] // Izvestiya vuzov. Yadernaya energetika. 2010. № 1. P. 153–163. (in Russian).
18. Kurachenko Yu.A., Kazanskij Yu.A., Matusevich Eu.S. Kriterii kachestva nejtronnyh puchkov dlya luchevoj terapii [Neutron beams’ quality criteria for radiation therapy] // Izvestiya vuzov. Yadernaya energetika. 2008. № 1. P. 139–149. (in Russian).
19. Kurachenko Yu.A. Reaktornye puchki dlya luchevoj terapii: kriterii kachestva i raschyotnye tekhnologii [Reactor beams for the radiation therapy: quality criteria and computation technologies] // Medicinskaya fizika. 2008. № 2 (38). P. 20–28. (in Russian).
20. Kurachenko Yu. A. Reaktornye puchki dlya luchevoj terapii. Raschyotnye modeli i vychislitel’nye tekhnologii [Reactor beams for radiation therapy. Calculation models and computation technologies]. – Saarbrücken, Deutschland: Palmarium Academic Publishing, OmniScriptum GmbH&Co. RG, (ISBN: 978-3-8473-9842-4) 2013. 372 p. (in Russian).
21. Burn K.W. et al. Final design and construction issues of the TAPIRO epithermal column, Report at ICNCT-XII, Oct. 9–13, 2006. http://icnct-12.umin.jp/beams for boron neutron capture therapy in a fast reactor/Current status of neutron capture therapy. IAEA-TECDOC-1223, 2001.
22. Liu Hungyuan B., Brugger R.M., Rorer D.C. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor BNL-63411. Доступно по адресу: http://www.iaea.org/inis/collection/NCLCollectionStore/ _Public/28/014/28014354.pdf
23. Riley K.J., Binns P.J., Harling O.K. Performance characteristics of the MIT fission converter based epithermal neutron beam // Phys. Med. Biol. 2003. Vol. 48. P. 943–958,
24. Harling O.K., Riley K.J., Newton T.H. et al. The new fission converter based epithermal neutron irradiation facility at MIT // Nuclear Reactor Laboratory. MIT. Доступно по адресу: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/026/36026570.pdf
25. MCNP – A General Monte Carlo N-Particle Transport Code. Version 5. Vol. I: Overview and Theory. Authors: X-5 Monte Carlo Team. LA-UR-03-1987. April 24. 2003.
26. Pelowitz D.B. MCNPX user’s manual. Version 2.4.0 – LA-CP-07-1473.
27. STAR-CD®. Доступно по адресу CD-adapco Engineering Simulation Software – CAE and CFD Software.