The study aims at finding solutions to ensure the safe operation of welders for hard-to-reach objects in the limited enclosed space with a rapid rise in the content of harmful substances and ambient air temperature. The research subject is the systems of lung protection for welders working under the constrained conditions with high gaseousness and lack or insufficient natural circulation of the ambient air. The research method is a numerical simulation of heat and mass transfer of the harmful substances, welding aerosols, and excess heat under the transient conditions in the three-dimensional formulation. The work methodology is the construction of mathematical models of heat and mass transfer of the contaminants on the basis of the classical gas flue models with their adaptation to the specific boundary conditions, the characteristics of different types of welding in hard-to-reach places including deepwater welding, and taking into account various types of heat transfer. A classification of hard-to-reach objects and types of welding is worked out. It is shown that the resulting mathematical models allow specifying in detail the physical fields of dangerous and harmful factors impact on the welders.
heat and mass transfer, modeling, harmful substances, safety, deepwater welding.
Проектирование и создание систем и средств защиты оператора-сварщика лежит в области детального математического описания нестационарных процессов тепломассопереноса вредных веществ и избытков теплоты от источников загрязнения. На основе полученных результатов создаётся технология проектирования систем и средств защиты операторов [1].
Основной задачей проекта является поиск решений по обеспечению безопасности работы сварщиков при выполнении сварочных работ на труднодоступных объектах при строительстве и ремонте нефтегазодобывающих платформ на шельфе. Заявленная конечная цель проекта достаточно сложная, поэтому необходимо на первом этапе работ выполнить следующее:
1. Уточнить план научно-исследовательских работ и привести его в соответствие с основной задачей проекта, показав новизну каждого этапа работ.
2. В проекте необходимо показать, для каких видов сварки проводятся исследования, так как рассматриваемые в работе объекты исследования (наземные и подводные, полуоткрытые и закрытые) специфичны и сильно отличаются, в том числе и по условиям сварки.
1. Avilkin, V.V., et al. Svarka stal´nykh gazoprovodov i gazovogo oborudovaniya v gorodskom kommunal´nom khozyaystve i energeticheskikh ustanovkakh : rukovodyashchiy dokument RD 01-001-06. [Welding of steel gas pipelines and gas equipment in municipal engineering and power plants: RD 01-001-06 regulatory document GUP “MOSGAZ”.] Moscow: GUP “MOSGAZ”; KPSF “Spetsstroyservis”, 2006, 79 p. (in Russian).
2. STO Gazprom 2–2.2–136–2007. Instruktsiya po tekhnologiyam svarki pri stroitel´stve i remonte promyslovykh i magistral´nykh gazoprovodov. Chast´ I. [Gazprom Company’s code 2-2.2-136-2007. Manual on welding techniques under field and main gas pipelines construction and repair. Part I. ] “Gazprom” PJSC, 2007. Available at: http://www.znaytovar.ru/gost/2/STO_Gazprom_2221362007_Instruk.html (accessed: 12.06.2016) (in Russian).
3. Svarka pri stroitel´stve i remonte magistral´nykh nefteprovodov : rukovodyashchiy dokument RD-25.160.00-KTN-011-10. [Welding under main oil pipelines construction and repair: regulatory document RD-25.160.00-KTN-011-10.] “AK “Transneft” PJCS; “Giprotruboprovod”PJCS. Available at: http://gisprofi.com/gd/documents/rd-25-160-00-ktn-011-10-svarka-pri-stroitelstve-i-remonte-magistralnyh-neft.html (accessed: 02.06.16) (in Russian).
4. Grishagin, V.М. Svarochnyy aerozol´: obrazovanie, issledovanie, lokalizatsiya, primenenie. [Welding fume: formation, investigation, localization, and application.] Tomsk: Izdatel´stvo Tomskogo politekhnicheskogo universiteta, 2011, 213 p. (in Russian).
5. Kononenko, V.Y. Giperboricheskaya sukhaya podvodnaya svarka (obzor.) [Hyperbaric dry underwater welding (Review)] Avtomaticheskaya Svarka, 2008, no. 4, pp. 44–50 (in Russian).
6. Allume, C.J. Effect on pressure on arcs. Proc. of the Int. Conf. of the International Institute of Welding, Trondheim, June 27-28, 1983, pp. 171–178.
7. Bailey, N. Welding under water a metallurgical appraisal. Proc. the First Int. Offshore and Polar Eng. Conf., Edinburgh, Aug.11-16, 1991, vol. 4, pp. 331–338.
8. Richardson, I. Deflection of a hyperbaric plasma arc in a transverse in a transverse magnetic field. Proc. of the 12th Int. Conf. on offshore mechanics and arctic eng., 1993, vol. 3-A, pp. 155–166.
9. Meskhi, B. C., et al. Konechno-elementnoe modelirovanie protsessov massoperenosa zagryazneniy v proizvodstvennoy srede s uchetom zavikhreniy vozdushnykh potokov. [Finite-element modeling of contamination mass transfer processes in technological environment with regard to airflow turbulence.] Vestnik of DSTU, 2012, vol.12, no. 6(67), pp. 10–16 (in Russian).
10. Tishchenko, N.F. Okhrana atmosfernogo vozdukha. Raschet soderzhaniya vrednykh veshchestv i ikh raspredelenie v vozdukhe. [Air protection. Calculation of the content of harmful substances and their distribution in the air] Moscow: Khimiya, 1991, 368 p. (in Russian).
11. Andreev, S.B., Golovchenko, V.S. Osnovy svarki sudovykh konstruktsiy. [Basics of welding of ship structures.] St.Petersburg: Sudostroenie, 2006, 552 p. (in Russian).
12. Rykalin, N.N. Raschety teplovykh protsessov pri svarke. [Calculations of thermal processes in welding.] Moscow: Mashinostroenie, 1951, 296 p. (in Russian).