UNIVERSAL MATHEMATICAL MODEL OF NETWORK PLANNING TRANSPORT AND PROCESS STREAMS OF TIMBER
Abstract and keywords
Abstract (English):
Consideration of transport as one of the main components of the production process and the analysis of the linkages of forestry sector with other sectors of production are based on the study of the proportions between the volumes and the structure of harvested timber and the products of all other industries. The analysis in this part of the proposed conduct on the basis of mathematical models, in particular, for the analysis of quantitative relationships of the production process, assess the impact of various factors on the dynamics of economic development, to analyze the prospects of their development.

Keywords:
system, transportation, timber, streams, structure, forward planning, modeling, algorithm, method, production, process operation, optimization, management
Text
Publication text (PDF): Read Download
References

1. Pilnik Y.N., Sushkov S.I., Arutyunyan A.Y. Metodika opredelenija optimal'noj struktury parka transportnotehnologicheskih mashin [Method for determining the optimal fleet structure transport and technological machines]. Sovremennye problemy nauki i obrazovanija [Modern problems of science and education]. 2015, no. 2. Available at: http://www.science-education.ru/129-22674 (In Russian).

2. Sushkov S.I., Burmistrova O.N., Pilnik Y.N. Principy reshenija zadach upravlenija v mnogourovnevyh transportnoproizvodstvennyh sistemah lesnogo kompleksa [Principles of management tasks in a multitier transport and production systems forest complex]. Fundamental'nye issledovanija [Fundamental research]. 2015, no. 11, Part 2, pp. 317-321. (In Russian).

3. Burmistrova O.N., Korol S.A. Opredelenie optimal'nyh skorostej dvizhenija lesovoznyh avto-poezdov iz uslovija minimizacii rashoda topliva [Determination of optimal speeds logging trucks from the condition of minimizing fuel consumption]. Vestnik Moskovskogo gosudarstvennogo universiteta lesa Lesnoj vestnik [Herald of Moscow State Forest University Forest Gazette]. 2013, no. 1 (93), pp. 25-28. (In Russian).

4. Setinc, Marko; Gradisar, Mirko; Tomat, Luka Optimization of a highway project planning using a modified genetic algorithm. Optimization, 2015, Vol. 64, Issue 3, pp. 687-707.

5. Janssen, Thomas Design and conctruction in existing contexts: Replacement of the first High Bridge Levensau. Janssen Thomasstahlbau, 2015, Vol. 84, Issue 3, pp. 182-194.

6. Hare, Warren; Lucet, Yves; Rahman, Faisal A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction. European journal of operational research, 2015, Vol. 241, Issue 3, pp. 631-641.

7. Santos, Joao; Ferreira, Adelino; Flintsch, Gerardo A life cycle assessment model for pavement management: methodology and computational framework. International journal of pavement engineering, 2015, Vol. 16, Issue 3, pp. 268-286.

8. Liyanage, Champika; Villalba-Romero, Felix Measuring Success of PPP Transport Projects: A Cross-Case Analysis of Toll Roads. Transport reviews, 2015, Vol. 35, Issue 2, Special Issue: SI, pp. 140-161.

9. Setinc, Marko; Gradisar, Mirko; Tomat, Luka Optimization of a highway project planning using a modified genetic algorithm. Optimization, 2015, Vol. 64, Issue 3, pp. 687-707.

10. Burdett R.; Kozan E.; Kenley R. Block models for improved earthwork allocation planning in linear infrastructure construction. Engineering optimization, 2015, Vol. 47, Issue 3, pp. 347-369.


Login or Create
* Forgot password?