Modeling of the non-destructive testing system of defects in solids is performed. Specifically, the inverse geometric problems of the elasticity theory for a flat rectangular area on reconstructing circular cavities and cracks breaking the body surface are considered. Additional information for solving these problems is a setting of the first four natural resonance frequencies. The inverse problem solution is based on the minimization of the residual functional between the measured input source information and the data calculated during the numerical solution of direct problems with the given parameters of defects. As a tool for solving direct problems, the finite element method implemented in FlexPDE program is used. The functional minimization is carried out by using a genetic algorithm (GA) implemented in the developed GAFEMNDT program. The program algorithm and GA settings used in the numerical experiments are described. The experiments results on determining parameters of defects (coordinates of centre, radius, coordinates of surface cracking and its size) are presented. The results demonstrate adequacy of the additional information to overcome the problem ill-posedness, as well as high efficiency of the proposed algorithm both in accuracy
genetic algorithm, finite element method, non-destructive testing.
Неразрушающий метод контроля (НРК) — контроль свойств и характеристик объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации. Способ НРК прочности заключается в том, что исследуемая конструкция или материал не подвергается механическим разрушениям, контроль осуществляется косвенно путем измерения и математического анализа физико-механических величин, отвечающих за прочностные свойства конструкции или материала.
Существующие методы неразрушающего контроля, такие как радиоволновой, оптический, капиллярный, тепловой, а также радиационный хорошо зарекомендовали себя и успешно используются в производстве и не только. Но с развитием техники и планомерным увеличением удельной производительности ЭВМ возникают новые возможности для проведения неразрушающего контроля. Одним из таких способов является использование эволюционных алгоритмов при распознавании измеряемой акустической информации об инспектируемом объекте. Среди этих методов наибольшее распространение в задачах дефектоскопии получили применение искусственных нейронных сетей (ИНС) и генетических алгоритмов (ГА) на этапе минимизации функционалов невязки между измеренной и рассчитанной информацией. Так применению ИНС при идентификации трещиноподобных дефектов в различных конструкциях посвящены работы [1–4] и др. Разработку и использование ГА в задачах идентификации механических свойств упругих тел и реконструкции дефектов можно найти в работах [5–8], в которых в качестве измеренной информации используются данные о вибрации тел или их резонансных частотах.
1. Kurbatova, P. S., Saprunov, N.I., Solovyev, A.N. Ob ispol´zovanii neyronnykh setey v zadachakh opredeleniya defektov v uprugikh telakh. [On the use of neural networks in problems of determining defects in elastic bodies.] Sovremennye problemy mekhaniki sploshnoy sredy: materialy X mezhdunar. konf. [Current problems of continuum mechanics: Proc. X Int. Conf.] 2006, pp. 175–180 (in Russian).
2. Solovyev, A. N., Sobol, B.V., Krasnoshchekov, A.A. Identifikatsiya i issledovaniye kriticheskogo sostoyaniya poperechnoy treshchiny v polose s nakladkoy na osnove iskusstvennykh neyronnykh setey. [The Identification and Study of the Critical State of a Transverse Crack in a Zone with a Lap Based on Artificial Neural Networks.] Russian Journal of Nondestructive Testing, 2014, vol. 50, no. 8, pp. 23–35 (in Russian).
3. Solovyev, A. N. Rekonstruktsiya defekta na poverkhnosti trub s pomoshch´yu sochetaniya metoda konechnykh elementov i iskusstvennykh neyronnykh setey. [Reconstructing defect on the surface of pipes using the finite element method and artificial neural network.] Vestnik SSC RAS, 2014, vol. 10, no. 2, pp. 9–15 (in Russian).
4. Baranov, I. V., Vatulyan, A.O., Solovyev, A.N. Ob odnom geneticheskom algoritme i yego primenenii v obratnykh zadachakh identifikatsii uprugikh sred. [Genetic algorithm for solving the inverse identification problem for elastic media.] Computational Technologies, 2006, vol 11, no. 3, pp. 14–26 (in Russian).
5. Yongyong He, Dan Guo, Fulei Chu. Using genetic algorithms and finite element methods to detect shaft crack for rotor-bearing system. Mathematics and Computers in Simulation, vol. 57, no. 1–2, pp. 95–108.
6. Mohammad-Taghi Vakil-Baghmisheh, Mansour Peimani, Morteza Homayoun Sadeghi, Mir Mohammad Ettefagh. Crack detection in beam-like structures using genetic algorithms. Applied Soft Computing, vol. 8, no. 2, pp. 1150–1160.
7. Fernando, S. Buezas, Marta B. Rosales, Carlos P. Filipich. Damage detection with genetic algorithms taking into account a crack contact model. Engineering Fracture Mechanics, vol. 78, no. 4, pp. 695–712.
8. Chatzi, Eleni N., Hiriyur, Badri, Waisman, Haim,. Smyth ,Andrew W. Experimental application and enhancement of the XFEM–GA algorithm for the detection of flaws in structures. Computers & Structures, vol. 89, no. 7–8, pp. 556–570.
9. Novatskiy, V. Teoriya uprugosti. [Theory of elasticity.] Moscow: Mir, 1975, 872 p. (in Russian)
10. Efficient genetic algorithms for professional purpose. СPAN. Available at: http : // search.cpan.org /~strzelec / AI-Genetic-Pro-0.4 / lib / AI / Genetic / Pro.pm / (accessed: 06.02.2016).
11. Learning Perl. The Perl Programming Language. Available at: http :// www.perl.org / (accessed: 06.02.2016).