The main work objective is the creation of the scientific back-ground for correct determination of a set of requirements to the fabrication material with a high-wearing feature under the droplet impingement erosion. A review of a backward and present state of the art of the national and foreign investigations in the field of the droplet impingement erosion of metal materials is carried out. The main outcome is as follows: insufficient fundamentality of research in this area; limitation of the used theoretical models; one-sided approach of many authors to the phenomenon that combines a whole set of factors of different physical nature. On this background, the author´s concept of the erosive wear process of metal under the influence of two-phase mist flow is presented. Particular attention is paid to a new scientific hypothesis of the active hydrogen effect on the fracture of metal under the hyper-velocity dropwise collisions.
droplet impingement erosion, fatigue failure, cavitation, hydrogen wear, steam turbine blades, metal alloys, anti-erosive protection.
Тепловой метод генерации энергии в настоящее время занимает доминирующее положение среди существующих способов производства электроэнергии, покрывая около 70% общего мирового объема потребления. Большинство экспертных оценок сходится к тому, что, по крайней мере до середины текущего столетия ситуация вряд ли существенно изменится [1]. Устойчивости такого положения в глобальной энергетике способствует ряд факторов. Большая часть из них хорошо известна [2]. Например, доступность и достаточность сырьевой базы тепловой энергетики; её технологическая и эксплуатационная надежность; постоянно прогрессирующий рост КПД теплоэнергетических установок, достигший в настоящее время для ПГУ уровня 55–60% (полвека назад он составлял чуть выше 30%). Однако есть факторы, не менее значительные, но «не лежащие на поверхности». К ним следует отнести две взаимосвязанных проблемы: глубина исследованности физических процессов, происходящих при работе энергетического оборудования, и обеспеченность энергетики надежными конструкционными материалами. Тесная взаимозависимость этих сфер очевидна — оптимальность материаловедческого решения определяется полнотой комплекса требований к материалам для изготовления оборудования и конструкций. Этот тезис может быть проиллюстрирован на примере лопаточного аппарата паровых турбин.
1. Artemov, V.N., et al. Sravnitel´nyy analiz effektivnosti teploenergetiki Rossii i stran mira. [Comparative analysis of efficiency of the thermal engineering of Russia and countries of the world.] Vestnik MEI, 2013, no.1, pp. 9-15 (in Russian).
2. Klimenko, A.V., Grin, E.A. Obespechenie teploenergetiki konstruktsionnymi materialami — osnova ee nadezh-nogo funktsionirovaniya i razvitiya. [Supplying thermal engineering with constructional materials is a basis of its proper opera-tion and development.] Thermal Engineering, 2014, no.1, pp. 44-49 (in Russian).
3. Proceedings of 5th International Conference on Erosion by Liquid and Solid Impact. Cambridge, U.K.: Cavendish Laboratory, 1979, 86 p.
4. Springer, G.S. Eroziya pri vozdeystvii kapel´ zhidkosti. [Erosion under the liquid droplets effect.] Moscow: Mashinostroenie, 1981, 200 p. (in Russian).
5. Evans, A., et al; Price, K., ed. Eroziya. [Erosion.] Moscow: Mir, 1982, 464 p. (in Russian).
6. Van der Zwaag, S., Dear, J.P., Townsend, D., and Walley, S.M. Rain and solid particle erosion damage mechanisms and materials evaluations. Cambridge, U.K.: Cavendish Laboratory, 1986. AFWAL-TR-86-4.
7. Polezhaev, Yu.V., Yurevich, F.B. Teplovaya zashchita [Thermal protection.] Moscow: Energiya, 1976, 392 p. (in Russian).
8. Polezhaev, Yu.V. Protsess ustanovleniya erozionnogo razrusheniya materiala pregrady pri mnogokratnom soudarenii chastitsami. [Development of erosional damage to the wall under multiple particle collision.] Journal of Engineering Physics and Thermophysics, 1979, vol. 37, no.3, pp. 389 (in Russian).
9. Polezhaev, Yu.V., et al. Raschetnaya model´ protsessa erozionnogo razrusheniya kompozitsionnogo materiala. [A predicted model for erosional damage to composites.] Journal of Engineering Physics and Thermophysics, 1979, vol.37, no. 3, pp. 395-404 (in Russian).
10. Lagerev, A.V. Veroyatnostnoe prognozirovanie erozii v sistemakh tekhnicheskoy diagnostiki vlazhnoparovykh turbomashin. [Probabilistic forecasting of erosion in systems of technical diagnostics of the moist-steam turbomachines.] Proceedings of the RAS. Power Engineering Journal, 1997, no. 2, pp. 134-143 (in Russian).
11. Dergachev, К.V. Elektronnaya sistema prognozirovaniya erozii rabochikh lopatok turbin atomnykh stantsiy. [Electronic forecasting system of erosion of turbine blades of nuclear power plants.] Proc. of Universities. Nuclear Power Engineering. 2001, no. 3, pp. 3–13 (in Russian).
12. Skotnikova, M.A., et al. Ispol´zovanie titanovykh splavov v kachestve materiala lopatok parovykh turbin. [Use of titanic alloys as material of the steam turbine blades.] Voprosy materialovedeniya, 2007, no. 3(51), pp. 61-70 (in Russian).
13. Lanina, А.А. Issledovanie vysokoskorostnogo kapleudarnogo vozdeystviya na poverkhnost´ lopatok parovykh turbi.n [Research of high-speed droplet-shock impact on a surface of the steam turbine blades.] Instrument and Technologies, 2008, no. 28-29, pp. 84-87 (in Russian).
14. Seleznev, L.I., Ryzhenkov, V.A. Otsenka dlitel´nosti inkubatsionnogo perioda erozionnogo iznosa konstruktsionnykh materialov [Assessment of duration of the incubatory period of erosive wear of constructional materials.] Thermal Engineering, 2005, no.4, pp. 61-63 (in Russian).
15. Povarov, O.A., Stanisha, B., Ryzhenkov, V.A. Issledovanie erozionnogo iznosa rabochikh lopatok parovykh turbin [Research of erosive wear of the working blades of steam turbines.] Thermal Engineering, 1988, no.4, pp. 66-69 (in Russian).
16. Ivanov, V.A., Faddeev, I.P., Borovkov, V.M., Korolev, V.I. Otsenka erozionnogo iznosa lopatochnogo apparata vlazhnoparovykh turbin AES [Assessment of erosive wear of blade device of the moist-steam engines of nuclear power plants.] Coll. Sci.Papers. Moscow: Izd-vo MEI, 1999, p. 214 (in Russian).
17. Seleznev, L.I., Ryzhenkov, V.A. Erozionnyy iznos konstruktsionnykh materialov [Erosive wear of constructional materials.] Technology of Metals, 2007, no. 3, pp. 19-24 (in Russian).
18. Seleznev, L.I., Ryzhenkov, V.A., Mednikov, A.F. Fenomenologiya erozionnogo iznosa materiala konstruktsionnykh staley i splavov zhidkimi chastitsami. [Phenomenology of erosive wear of constructional steels and alloys by liquid particles.] Thermal Engineering, 2010, no.9, pp. 12-16 (in Russian).
19. Ryzhenkov, V.A., Lebedeva, A.I., Mednikov, Al.F. Sovremennoe sostoyanie i sposoby resheniya problemy erozionnogo iznosa lopatok vlazhno-parovykh stupeney turbin. [Current state and ways of solution to the erosive wear problem of blades of the moist-steam turbine sections.] Thermal Engineering, 2011, no.9, pp. 8-13 (in Russian).
20. Mednikov, A.F., Ryzhenkov, V.A., Seleznev, L.I., Lebedeva, A.I. Issledovanie protsessa izmeneniya kharakteristik rel´yefa poverkhnosti lopatochnoy stali v inkubatsionnom periode razvitiya kapleudarnoy erozii. [Research of changes of surface relief of blade steel in the incubatory period of droplet impingement erosion.] Thermal Engineering, 2012, no.5, pp. 69-75 (in Russian).
21. Min Ku Lee, Whung Whoe Kim, Chang Kyu Rhee, and Won Jong Lee. Investigation of liquid impact erosion for 12Cr steel and Stellite 6B // Journal of Nuclear Materials. — 1998. — Vol. 257. — рр. 134144.
22. Min-Ku Lee, Whung-Whoe Kim, Chang-Kyu Rhee, and Won-Jong Lee. An analysis of stress waves in 12Cr steel, Stellite 6B and TiN by liquid impact loading. Nuclear Engineering and Design, 2002, vol. 214, рр. 183–193.
23. Haller, K.K., Ventikos, Y., Poulikakos, D., and Monkewitz, P. Computational study of High-speed liquid droplet impact. Journal of Applied Physics, 2002, vol. 92, no. 5, pp. 2821–2828.
24. Imano, A.M., and Beroual, A. Deformation of water droplets on solid surface in electric field. Journal of Colloid and Interface Science, 2006, vol. 298, pp. 869–879.
25. Mann, B.S., and Vivek, Arya. HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades. Wear, 2003, vol. 254, pp. 652–667.
26. Mann, B.S., Vivek, Arya, and Pankaj, Joshi. Advanced High-Velocity Oxygen-Fuel Coating and Candidate Materials for Protecting LP Steam Turbine Blades Against Droplet Erosion. Journal of Materials Engineering and Performance, 2005, vol. 14(4), pp. 487–494.
27. Sandeep, Soni. Analysis of liquid droplet erosion for steam turbine blades of composite material. Int. J. Mech. Eng. & Rob. Res., 2012, vol. 1, no. 3, pp. 214–226.
28. Zhou, Q., Li, N., Chen, X., Yonezu, A., Xu, T., Hui, Sh., and Zhang, D. Water Drop Erosion on Turbine Blades: Numerical Framework and Applications. Materials Transactions, 2008, vol. 49, no. 7, pp. 16061615.
29. Zhou, Q., Li, N., Chen, X., Xu, T., Hui, S., and Zhang, D. Analysis of water drop erosion on turbine blades based on a nonlinear liquid-solid impact model. International Journal of Impact Engineering, 2009, vol.36, pp. 1156–1171.
30. Nicolici, S., Prisecaru, I., and Ghitescu, P. Study of fluid-structure interaction in liquid droplet impingement phenomena. U.P.B. Sci. Bull., Series D, 2012, vol. 74, iss. 1, pp. 148–154.
31. Keil, T., Pelz, P.F., Kadavelil, J., Necker, J., Moser, W., and Christ, D. Droplet Impact vs. Cavitation Erosion. Proceedings of WIMRC 3rd International Cavitation Forum, 4th-6th July 2011. UK: University of Warwick, 2011.
32. Kamkar, N., Bridier, F., Bocher, P., and Jedrzejowski, P. Water droplet erosion mechanism in rolled Ti–6Al–4V. Wear of Materials, 2013, vol. 301, iss.1–2, pp. 442–448.
33. Tobin, E.F., Young, T.M., Raps, D., and Rohr, O. Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities. Wear, 2011, vol.271, pp. 2625–2631.
34. Tobin, E.F., Young, T.M., and Raps, D. Evaluation and correlation of inter-laboratory results from a rain erosion test campaign. Proceedings of 28th International Congress of the Aeronautical Sciences, 2012.
35. Fujisawa, N., Morita, R., Nakamura, A., and Yamagata, T. Critical Consideration on Wall Thinning Rate by Liquid Droplet Impingement Erosion. Journal of Advanced Maintenance, 2012, vol. 4, no. 2, pp. 79–87.
36. Hattori, S., and Takinami, M. Comparison of cavitation erosion rate with liquid impingement erosion rate. Wear, 2010, vol. 269, pp. 310–316.
37. Kudryakov, O.V., Varavka, V.N. Mekhanizmy formirovaniya erozionnogo iznosa metallicheskikh materialov pri vysokoskorostnykh kapel´nykh soudareniyakh: Chast´ 1 [Mechanisms of forming erosive wear of metal materials at high-speed liquid droplet impacts: Part 1.] Materialovedenie, 2012, no.5, pp. 36-43 (in Russian).
38. Kudryakov, O.V., Varavka, V.N. Mekhanizmy formirovaniya erozionnogo iznosa metallicheskikh materialov pri vysokoskorostnykh kapel´nykh soudareniyakh: Chast´ 2 [Mechanisms of forming erosive wear of metal materials at high-speed liquid droplet impacts: Part 2] Materialovedenie, 2012, no.6, pp. 14-19 (in Russian).
39. Varavka, V.N., Kudryakov, O.V. Osobennosti razrusheniya metallicheskikh splavov v usloviyakh ustoychivoy kapleudarnoy erozii. [Features of destruction of metal alloys under the conditions of steady droplet-shock erosion.] Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki, 2012, no. 3, pp. 45-50 (in Russian).
40. Kudryakov, O.V., Varavka, V.N. Monitoring nachal´nykh stadiy erozionnogo iznosa ionno-plazmennykh pokrytiy pri kapleudarnom vozdeystvii [Monitoring of initial stages of erosive wear of ion-plasma coatings at droplet-shock impacts.] Uprochnyayushchie tekhnologii i pokrytiya, 2012, no. 10, pp. 40-47 (in Russian).
41. Varavka, V.N., Kudryakov, O.V. Zakonomernosti iznosa stali pri vozdeystvii diskretnogo vodno-kapel´nogo potoka. Chast´ 1: Nachal´naya stadiya kapleudarnoy erozii. [Regularities of steel wear at impact of discrete water-droplet stream. Part 1: Initial stage of droplet-shock erosion.] Friction and Wear, 2015, vol. 36, no. 1, pp. 89-99 (in Russian).
42. Varavka, V.N., Kudryakov, O.V. Zakonomernosti iznosa stali pri vozdeystvii diskretnogo vodno-kapel´nogo potoka. Chast´ 2: Stadiya razvitoy kapleudarnoy erozii [Regularities of steel wear at impact of discrete water-droplet stream. Part 2: Stage of developed droplet-shock erosion.] Friction and Wear, 2015, vol. 36, no. 2, pp. 201-212 (in Russian).
43. Kudryakov, O.V., Varavka, V.N. Mekhanizmy i zakonomernosti degradatsii poverkhnosti stali na stadiyakh razvitoy kapleudarnoy erozii. [Mechanisms and laws of steel surface degradation during the stages of developed droplet erosion.] Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2015, no. 2, pp. 100–112 (in Russian).
44. Margulis, M.A. Osnovy zvukokhimii (khimicheskie reaktsii v akusticheskikh polyakh) [Fundamentals of sound chemistry (chemical reactions in acoustic fields).] Moscow: Vysshaya shkola, 1984, 272 p. (in Russian).
45. Zavilopulo, A.N., Chipeev, F.F., Shpenik, O.B. Ionizatsiya molekul azota, kisloroda, vody i dvuokisi ugleroda elektronnym udarom vblizi poroga [Ionization of molecules of nitrogen, oxygen, water and carbon dioxide in electronic blow near threshold.] Journal of applied physics, 2005, vol. 75, iss. 4, pp. 19-24 (in Russian).
46. Mallard, G., and Linstrom, P.J. International database of nuclear and molecular constants NIST. NIST Standard Reference Database. 2000, vol. 69. Available at: http://www.webbook.nist.gov (accessed: 21.10.2014).
47. Garkunov, D.N. Tribotekhnika. [Tribology.] Moscow: Mashinostroenie, 1985, 424 p. (in Russian).
48. Alefeld, G., Felkel, I., eds. Vodorod v metallakh. [Hydrogen in metals] In 2 vol. Moscow: Mir, 1981. (in Russian).
49. Kolachev, B.A. Vodorodnaya khrupkost´ metallov [Hydrogen fragility of metals.] Moscow: Metallurgiya, 1985, 216 p. (in Russian)